@seofanboy/babbar-mcp-server
v1.0.4
Published
Model Context Protocol server for Babbar.tech SEO API
Maintainers
Readme
Babbar MCP Server
A Model Context Protocol (MCP) server that integrates with the Babbar.tech SEO API, enabling AI assistants (Claude, ChatGPT with MCP, etc.) to perform advanced SEO analysis, competitor research, backlink auditing, and content gap identification.
Features
Comprehensive SEO Analysis
- Host/Domain/URL Overview: Popularity (Value), Trust, Semantic Value, Babbar Authority Score (BAS)
- Backlink Analysis: URL, host, and domain backlink profiles
- Anchor Text Analysis: Anchor distribution and risk detection
- Page Analysis: Identify top pages by Page Value, Trust, Semantic Value, Internal Page Value
Competitor Discovery & Analysis
- Similar Hosts: Detect semantically close competitors
- Batch Analysis: Compare multiple entities (hosts/domains/URLs)
- Historical Data: Track performance over time
Advanced SEO Metrics
- Induced Strength (fi): Unique Babbar metric measuring real link value (popularity + topicality)
- Internal PageRank: Internal linking analysis
- Duplication Analysis: RollingHash (Rabin–Karp) detection of duplicate content (87%+ threshold)
Keywords & SERP Analysis
- Keyword Positions: Track Google rankings (currently supports fr_FR, en_GB, en_US, es_ES)
- SERP Data: Full SERP with features and positions
- Semantic Explorer: Related searches, People Also Ask, suggestions
Performance & Reliability
- Smart Caching: 10-day cache for heavy endpoints
- Rate Limit Management: Auto-handling + retry after 60s
- Usage Logging: Full request/response logging
- Error Handling: Clear messages for invalid key, rate limits, or API issues
🚀 Installation & Setup
Prerequisites
- Node.js 18 or higher (check with
node -v) - npm (comes with Node.js, check with
npm -v) - Babbar API key (get it from your Babbar settings)
1. Clone the repository
git clone https://github.com/BabbarTech/BabbarMCP.git
cd BabbarMCP2. Install dependencies
npm install3. Set up environment variables
You must export your Babbar API key: Create a .env file from the provided .env.example:
cp .env.example .envEdit .env:
BABBAR_API_KEY=your_api_key_here
LOG_LEVEL=info⚠️ Without a valid key, the server will not return real data (the API substitutes with dummy hosts/URLs).
4. Build the project
npm run buildThis compiles TypeScript sources into the dist/ directory.
▶️ Usage
Local development
Run in watch mode:
npm run devRun built server:
node dist/index.jsWith Claude Desktop
Add this block to your claude_desktop_config.json:
{
"mcpServers": {
"babbar": {
"command": "node",
"args": ["/absolute/path/to/babbar-mcp/dist/index.js"],
"env": {
"BABBAR_API_KEY": "your_api_key_here",
"LOG_LEVEL": "info"
}
}
}
}With ChatGPT Desktop (MCP support)
Go to Settings > MCP Servers, and add a new server with: Command: node Args: /absolute/path/to/babbar-mcp/dist/index.js Env: at least BABBAR_API_KEY
🛠️ Available Tools (highlights)
Host Analysis
babbar_host_overview→ Metrics for a hostbabbar_host_backlinks_url|host|domain→ Backlink analysisbabbar_host_anchors→ Anchor distributionbabbar_host_pages_top_sv|pt|pv|iev→ Top pages by different metricsbabbar_host_similar→ Competitor discoverybabbar_host_keywords→ Keywords and rankingsbabbar_host_duplicate→ Duplicate content clusters
Domain Analysis
babbar_domain_overviewbabbar_domain_backlinks_*babbar_domain_anchors
URL Analysis
babbar_url_overviewbabbar_url_induced_strength (fi)babbar_url_semantic_similaritybabbar_url_links_internal|external
Keyword & SERP
babbar_keyword_serpbabbar_semantic_questionsbabbar_semantic_relatedbabbar_semantic_suggests
Advanced Analyses
babbar_content_gapbabbar_competitive_analysisbabbar_anchor_profile_riskbabbar_backlink_opportunities_spotfinder(uses Induced Strength only)
📖 Example Queries (works in French)
- Do a full metrics analysis of whisky.glass
- Give me backlink opportunities for www.recette-americaine.com
- Tell me about the semantic neighborhood of www.clubmed.fr
- Can you run a content gap analysis for whisky.glass?
- Show me the internal duplication issues within whisky.glass
- Provide me with a health analysis of whisky.glass
📊 Understanding Babbar Metrics
- Page/Host/Domain Value (0–100) → Popularity (Reasonable Surfer model)
- Page/Host/Domain Trust (0–100) → Trust score (not a direct Google authority factor)
- Semantic Value (0–100) → Popularity adjusted by topical coherence
- BAS (0–100) → Combined authority score with anti-spam (best correlated to Google rankings)
- Induced Strength (fi) → Only valid metric for backlink value, computed by Babbar API
💡 Tip: Always benchmark your metrics against your direct competitors, not the whole web.
Rate Limiting
- Each plan has a per-minute API quota.
- Remaining calls are tracked via headers (
x-ratelimit-remaining). - The MCP server auto-waits 60 seconds when the limit is exhausted.
- Errors are explicit if multiple processes compete for the limit.
Caching
- Cache enabled on POST requests (main data endpoints)
- Cache lifetime: 10 days
- Cache key = endpoint + parameters
- Reduces redundant queries and saves API credits
🐞 Error Handling
- 401 Unauthorized → Invalid or missing
BABBAR_API_KEY - 429 Too Many Requests → Rate limit exceeded, auto-retry after 60s
- 400/404/Other → Detailed error, check parameters
Logs include: endpoint, timestamp, status, and remaining quota.
📜 Logging
- Default: info level
- Levels:
debug,info,warn,error - Configure via
LOG_LEVELenvironment variable - Logs include endpoint calls, rate limit status, success/failure
🛠️ Development
Run in watch mode:
npm run devRebuild manually:
npm run buildLint the code:
npm run lint🤝 Support
- API Support: [email protected]
- Docs: Babbar API Reference
- Issues: GitHub Issues
📄 License
MIT License – see LICENSE.
🙌 Contributing
Contributions are welcome!
Please open an issue first to discuss changes. Pull requests should include tests when possible.
⚡ Acknowledgments
Built with:
- Model Context Protocol SDK
- Babbar.tech API
- Node.js, TypeScript, Axios, Node-Cache, Pino
