npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@snap-agent/analytics

v0.1.0

Published

Comprehensive analytics plugin for SnapAgent SDK - Performance, RAG, Cost, Conversation, and Error metrics

Readme

@snap-agent/analytics

Comprehensive analytics plugin for SnapAgent SDK - Track performance, RAG, cost, conversation, and error metrics.

Features

5 Metric Categories:

  1. Performance - Latency, timing breakdown, percentiles (P50, P95, P99)
  2. RAG - Retrieval stats, cache rates, similarity scores
  3. Cost & Tokens - Usage tracking, cost calculation by model
  4. Conversation - Engagement, session quality, abandonment
  5. Errors - Error rates, component breakdown, reliability
  • Real-time Tracking - Event callbacks for live dashboards
  • Time Series - Historical data with grouping (hour/day/week)
  • Cost Calculation - Pre-configured pricing for major models
  • Auto-Cleanup - Configurable data retention

Installation

npm install @snap-agent/analytics @snap-agent/core

Quick Start

import { createClient, MemoryStorage } from '@snap-agent/core';
import { SnapAgentAnalytics } from '@snap-agent/analytics';

const analytics = new SnapAgentAnalytics({
  // All categories enabled by default
  enablePerformance: true,
  enableRAG: true,
  enableCost: true,
  enableConversation: true,
  enableErrors: true,
  
  // Real-time event handler
  onMetric: (event) => {
    console.log(`[${event.type}]`, event.data);
  },
});

const client = createClient({
  storage: new MemoryStorage(),
  providers: {
    openai: { apiKey: process.env.OPENAI_API_KEY! },
  },
});

const agent = await client.createAgent({
  name: 'Analytics Demo',
  instructions: 'You are helpful.',
  model: 'gpt-4o',
  userId: 'user-123',
  plugins: [analytics],
});

// Use the agent normally...
// Analytics are collected automatically

// Get metrics
const metrics = await analytics.getMetrics({
  agentId: agent.id,
  startDate: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000), // Last 7 days
});

console.log('Performance:', metrics.performance);
console.log('RAG:', metrics.rag);
console.log('Cost:', metrics.cost);
console.log('Conversation:', metrics.conversation);
console.log('Errors:', metrics.errors);

Configuration

const analytics = new SnapAgentAnalytics({
  // Enable/disable categories
  enablePerformance: true,
  enableRAG: true,
  enableCost: true,
  enableConversation: true,
  enableErrors: true,

  // Custom model costs (per 1K tokens)
  modelCosts: {
    'my-custom-model': { input: 0.001, output: 0.002 },
  },

  // Embedding cost (per 1K tokens)
  embeddingCost: 0.0001,

  // Data retention (days, 0 = forever)
  retentionDays: 30,

  // Real-time callback
  onMetric: (event) => {
    // Send to your monitoring system
    sendToDataDog(event);
  },
});

Metric Categories

1. Performance Metrics

const perf = analytics.getPerformanceMetrics({ agentId: 'agent-123' });

// Returns:
{
  totalRequests: 1500,
  avgLatency: 450,        // ms
  p50Latency: 380,
  p95Latency: 850,
  p99Latency: 1200,
  minLatency: 120,
  maxLatency: 5000,
  
  // Component breakdown
  avgLLMTime: 350,
  avgRAGTime: 80,
  avgPluginTime: 15,
  avgDbTime: 5,
  
  // Streaming
  avgTimeToFirstToken: 150,
  avgTimeToLastToken: 420,
  
  // Distribution
  latencyDistribution: {
    under100ms: 50,
    under500ms: 1200,
    under1s: 200,
    under5s: 45,
    over5s: 5
  }
}

2. RAG Metrics

const rag = analytics.getRAGMetrics({ agentId: 'agent-123' });

// Returns:
{
  totalQueries: 800,
  avgDocumentsRetrieved: 4.2,
  avgVectorSearchTime: 45,     // ms
  avgEmbeddingTime: 30,
  cacheHitRate: 0.72,          // 72%
  cacheMissRate: 0.28,
  avgSimilarityScore: 0.85,
  avgRerankTime: 25,
  avgContextLength: 2500,      // chars
  avgContextTokens: 650,
  avgSourcesCount: 3.8,
  retrievalSuccessRate: 0.95   // 95%
}

3. Cost & Token Metrics

const cost = analytics.getCostMetrics({ agentId: 'agent-123' });

// Returns:
{
  totalCost: 45.67,            // USD
  totalTokens: 2500000,
  totalPromptTokens: 1800000,
  totalCompletionTokens: 700000,
  avgTokensPerRequest: 1667,
  avgCostPerRequest: 0.03,
  tokenEfficiency: 0.39,       // output/input ratio
  
  // Breakdowns
  costByModel: {
    'gpt-4o': 35.50,
    'gpt-4o-mini': 10.17
  },
  costByAgent: {
    'agent-123': 45.67
  },
  tokensByModel: {
    'gpt-4o': 1800000,
    'gpt-4o-mini': 700000
  },
  
  // Embeddings
  totalEmbeddingTokens: 500000,
  totalEmbeddingCost: 0.05,
  
  // Time-based
  dailyCosts: {
    '2024-01-15': 5.20,
    '2024-01-16': 6.10,
    // ...
  }
}

4. Conversation Metrics

const conv = analytics.getConversationMetrics({ agentId: 'agent-123' });

// Returns:
{
  totalThreads: 450,
  totalMessages: 3200,
  avgMessagesPerThread: 7.1,
  avgThreadDuration: 180000,   // ms (~3 min)
  avgSessionLength: 180000,
  userReturnRate: 0.65,        // 65% of users come back
  threadAbandonmentRate: 0.12, // 12% abandon after 1 message
  
  // Message characteristics
  avgInputLength: 125,         // chars
  avgOutputLength: 450,
  inputLengthDistribution: {
    short: 800,     // < 50 chars
    medium: 1500,   // 50-200 chars
    long: 700,      // 200-500 chars
    veryLong: 200   // > 500 chars
  }
}

5. Error Metrics

const errors = analytics.getErrorMetrics({ agentId: 'agent-123' });

// Returns:
{
  totalErrors: 45,
  errorRate: 0.03,             // 3%
  
  // By type
  errorsByType: {
    'rate_limit': 20,
    'timeout': 15,
    'api_error': 10
  },
  
  // By component
  llmErrors: 30,
  ragErrors: 5,
  pluginErrors: 5,
  dbErrors: 3,
  networkErrors: 2,
  timeoutErrors: 15,
  rateLimitHits: 20,
  
  // Reliability
  successRate: 0.97,
  retryCount: 50,
  fallbackUsage: 5,
  
  // Recent errors
  recentErrors: [
    { timestamp: Date, type: 'rate_limit', message: '...', agentId: '...' },
    // ...
  ]
}

Time Series Data

// Get latency over time
const latencySeries = analytics.getTimeSeries('latency', {
  agentId: 'agent-123',
  startDate: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000),
  groupBy: 'day',
});

// Returns:
[
  { timestamp: Date, value: 450, metadata: { count: 200 } },
  { timestamp: Date, value: 420, metadata: { count: 185 } },
  // ...
]

// Available metrics: 'latency' | 'tokens' | 'cost' | 'errors' | 'requests'

Extended Tracking

For detailed metrics, use the extended tracking methods:

// Track request with full context
await analytics.trackRequestExtended({
  agentId: 'agent-123',
  threadId: 'thread-456',
  userId: 'user-789',
  organizationId: 'org-abc',
  message: 'User message',
  messageLength: 50,
  timestamp: new Date(),
  model: 'gpt-4o',
  provider: 'openai',
});

// Track response with all metrics
await analytics.trackResponseExtended({
  agentId: 'agent-123',
  threadId: 'thread-456',
  userId: 'user-789',
  response: 'Assistant response',
  responseLength: 200,
  timestamp: new Date(),
  
  // Performance timings
  timings: {
    total: 450,
    llmApiTime: 350,
    ragRetrievalTime: 80,
    pluginExecutionTime: 15,
    dbQueryTime: 5,
    timeToFirstToken: 150,
    timeToLastToken: 420,
  },
  
  // Token usage
  tokens: {
    promptTokens: 500,
    completionTokens: 150,
    totalTokens: 650,
  },
  
  // RAG metrics (if enabled)
  rag: {
    enabled: true,
    documentsRetrieved: 5,
    vectorSearchTime: 45,
    embeddingTime: 30,
    cacheHit: true,
    avgSimilarityScore: 0.85,
    contextLength: 2500,
    contextTokens: 600,
    sourcesCount: 4,
  },
  
  // Status
  success: true,
  model: 'gpt-4o',
  provider: 'openai',
});

// Track errors
await analytics.trackError({
  agentId: 'agent-123',
  threadId: 'thread-456',
  timestamp: new Date(),
  errorType: 'rate_limit',
  errorMessage: 'Rate limit exceeded',
  component: 'llm',
});

Pre-configured Model Costs

The plugin comes with pre-configured costs for major models:

| Model | Input (per 1K) | Output (per 1K) | |-------|----------------|-----------------| | gpt-4o | $0.005 | $0.015 | | gpt-4o-mini | $0.00015 | $0.0006 | | gpt-4-turbo | $0.01 | $0.03 | | gpt-4 | $0.03 | $0.06 | | gpt-3.5-turbo | $0.0005 | $0.0015 | | claude-3-5-sonnet | $0.003 | $0.015 | | claude-3-opus | $0.015 | $0.075 | | claude-3-haiku | $0.00025 | $0.00125 | | gemini-1.5-pro | $0.00125 | $0.005 | | gemini-1.5-flash | $0.000075 | $0.0003 |

Add custom models via config:

new SnapAgentAnalytics({
  modelCosts: {
    'my-custom-model': { input: 0.001, output: 0.002 },
  },
});

Export & Utility

// Get raw data for export
const data = analytics.exportData();
// { requests: [...], responses: [...], errors: [...] }

// Get summary
const summary = analytics.getSummary();
// { totalRequests: 1500, totalErrors: 45, ... }

// Clear all data
analytics.clear();

Integration Examples

Send to DataDog

import { datadogLogs } from '@datadog/browser-logs';

new SnapAgentAnalytics({
  onMetric: (event) => {
    datadogLogs.logger.info('snap-agent.metric', {
      type: event.type,
      ...event.data,
    });
  },
});

Send to PostHog

import posthog from 'posthog-js';

new SnapAgentAnalytics({
  onMetric: (event) => {
    posthog.capture(`snapagent_${event.type}`, event.data);
  },
});

Custom Dashboard

import express from 'express';

const app = express();
const analytics = new SnapAgentAnalytics();

app.get('/metrics', async (req, res) => {
  const metrics = await analytics.getMetrics({
    startDate: new Date(Date.now() - 24 * 60 * 60 * 1000),
  });
  res.json(metrics);
});

app.get('/metrics/timeseries/:metric', (req, res) => {
  const series = analytics.getTimeSeries(
    req.params.metric as any,
    { groupBy: 'hour' }
  );
  res.json(series);
});

License

MIT © ViloTech