@speakeasy-api/tonic
v0.1.0
Published
<div align="center"> <a href="https://www.speakeasy.com/" target="_blank"> <img width="1500" height="500" alt="Speakeasy" src="https://github.com/user-attachments/assets/0e56055b-02a3-4476-9130-4be299e5a39c" /> </a> <br /> <br /> <a href="ht
Maintainers
Keywords
Readme
npm i @speakeasy-api/tonicFeatures
- Under 2.5kb gzipped (enforced by CI)
- Zero dependencies
- Full TypeScript inference
- Never throws
Why this exists
Validation libraries like Zod are designed to reject invalid data. That's correct for validating user input at trust boundaries—you control the schema, users control the data, and you want to fail fast on bad input.
API responses are different. You control the client code, but someone else controls the server. When consuming APIs:
- Fields get added (new features ship)
- Fields get removed (deprecations happen)
- Types change (
"count": "5"→"count": 5) - Enums grow new variants (
status: "pending" | "complete"gains"processing") - Response shapes change across versions
When Zod encounters any of these, it throws. Your application crashes. Users see error screens. You scramble to deploy a client update for a change that shouldn't have broken anything.
What tonic does
Tonic coerces input to match your schema. It always produces a valid output—no exceptions. Unknown fields pass through. Missing fields get defaults. Type mismatches get converted when possible.
import { object, string, number, parse } from "@speakeasy-api/tonic";
const User = object({
id: number(),
name: string(),
});
// All of these produce { id: 123, name: "alice" }
parse(User, { id: 123, name: "alice" }); // exact match
parse(User, { id: "123", name: "alice" }); // string → number
parse(User, { id: 123, name: "alice", role: "admin" }); // extra field preserved
parse(User, { id: 123 }); // missing string → ""
parse(User, null); // complete miss → defaultsExamples
Parsing API responses
const ApiResponse = object({
data: array(
object({
id: string(),
createdAt: string(),
status: literal("active"),
})
),
cursor: optional(string()),
});
// Works even if the API adds new fields or changes status values
const response = await fetch("/api/items").then((r) => r.json());
const { data, cursor } = parse(ApiResponse, response);Detecting API response mismatches
Use parseWithDiagnostics to detect when the API returns data that doesn't match your expectations. This is useful for logging warnings without breaking your app:
const UserResponse = object({
id: number(),
name: string(),
email: string(),
role: literal("admin"),
});
const response = await fetch("/api/user/123").then((r) => r.json());
const { value, diagnostics } = parseWithDiagnostics(UserResponse, response);
// Log warnings for any mismatches
for (const diagnostic of diagnostics) {
const path = diagnostic.path.join(".");
if (diagnostic.kind === "default") {
console.warn(`Missing field "${path}": using default value`);
} else if (diagnostic.kind === "coercion") {
console.warn(
`Type mismatch at "${path}": expected ${diagnostic.details.to}, got ${diagnostic.details.from}`
);
}
}Discriminated unions
Events, webhooks, and polymorphic responses often use a discriminator field:
const WebhookEvent = union(
object(
{
type: literal("user.created"),
user: object({ id: string(), email: string() }),
},
"UserCreated"
),
object({ type: literal("user.deleted"), userId: string() }, "UserDeleted"),
object(
{ type: literal("invoice.paid"), invoiceId: string(), amount: number() },
"InvoicePaid"
)
);
// Known type, exact match → routes to UserDeleted
parse(WebhookEvent, { type: "user.deleted", userId: "u_123" });
// → { type: "user.deleted", userId: "u_123" }
// Known type, shape changed → routes to UserCreated, fills expected fields
// with default values
parse(WebhookEvent, { type: "user.created", userId: "u_123" });
// → { type: "user.created", userId: "u_123", user: { id: "", email: "" } }
// Known type, but payload has extra fields the schema doesn't know about
// (API added a "reason" field) → still routes correctly, extra data preserved
parse(WebhookEvent, { type: "user.deleted", userId: "u_123", reason: "spam" });
// → { type: "user.deleted", userId: "u_123", reason: "spam" }
// Unknown type → doesn't crash, coerces to closest structural match
// "user.updated" isn't in schema, but has a "user" field like UserCreated
parse(WebhookEvent, {
type: "user.updated",
user: { id: "u_123", email: "[email protected]" },
});
// → { type: "user.updated", user: { id: "u_123", email: "[email protected]" } }Open enums
APIs add enum values over time. A strict enum breaks when the server returns a value the client doesn't know about:
// This is actually a union of literals, allowing any string
const Status = union(
literal("pending"),
literal("active"),
literal("archived")
);
parse(Status, "pending"); // "pending" (exact match)
parse(Status, "suspended"); // "suspended" (unknown value preserved)
const Item = object({
id: string(),
status: Status,
});
// Unknown enum values pass through without crashing
parse(Item, { id: "123", status: "on_hold" });
// → { id: "123", status: "on_hold" }Handling missing data
When a field is missing, you get the schema's default:
const Config = object({
timeout: number(), // default: 0
retries: number(), // default: 0
debug: boolean(), // default: false
endpoint: string(), // default: ""
});
parse(Config, {});
// → { timeout: 0, retries: 0, debug: false, endpoint: "" }
parse(Config, { timeout: 30 });
// → { timeout: 30, retries: 0, debug: false, endpoint: "" }optional vs nullable
const Profile = object({
name: string(),
bio: optional(string()), // omitted from output when undefined
avatar: nullable(string()), // null when missing
});
parse(Profile, { name: "alice" });
// → { name: "alice", avatar: null }
// Note: bio is not present in output
parse(Profile, { name: "alice", bio: undefined, avatar: undefined });
// → { name: "alice", avatar: null }Array coercion
Non-arrays become single-element arrays:
const Tags = array(string());
parse(Tags, ["a", "b"]); // ["a", "b"]
parse(Tags, "single"); // ["single"]
parse(Tags, null); // []Field renaming
The field wrapper lets your schema diverge from the input shape. Map input keys to different output keys. This is uuseful for naming convention differences, legacy field names, or reshaping third-party API responses to match your domain model:
const User = object({
firstName: field(string(), { from: "first_name" }),
lastName: field(string(), { from: "last_name" }),
createdAt: field(string(), { from: "created_at" }),
isActive: field(boolean(), { from: "is_active" }),
});
parse(User, {
first_name: "Alice",
last_name: "Smith",
created_at: "2024-01-01",
is_active: true,
});
// → { firstName: "Alice", lastName: "Smith", createdAt: "2024-01-01", isActive: true }Works with all schema types including optional and nullable:
const Profile = object({
displayName: field(string(), { from: "display_name" }),
avatarUrl: field(optional(string()), { from: "avatar_url" }),
bio: field(nullable(string()), { from: "bio_text" }),
});
parse(Profile, { display_name: "alice" });
// → { displayName: "alice", bio: null }
// Note: avatarUrl is omitted (optional + missing)Aliased fields work with union discrimination:
const Payment = union(
object({
paymentType: field(literal("card"), { from: "payment_type" }),
lastFour: field(string(), { from: "last_four" }),
}),
object({
paymentType: field(literal("bank"), { from: "payment_type" }),
accountNumber: field(string(), { from: "account_number" }),
})
);
parse(Payment, { payment_type: "card", last_four: "4242" });
// → { paymentType: "card", lastFour: "4242" }Type inference
const User = object({
id: number(),
name: string(),
tags: array(string()),
settings: optional(
object({
theme: literal("light"),
notifications: boolean(),
})
),
});
type User = Infer<typeof User>;
// {
// id: number;
// name: string;
// tags: string[];
// settings?: { theme: "light" | string; notifications: boolean };
// }Cyclic / recursive types
For self-referential schemas (like a User with a manager field that is also a User), use typed<T>() with getter syntax to break the circular inference:
import { object, string, Infer } from "@speakeasy-api/tonic";
const UserSchema = object({
id: string(),
name: string(),
get manager() {
return UserSchema;
},
});
parse(UserSchema, {
id: "1",
name: "Alice",
manager: { id: "2", name: "Bob" },
});
// → { id: "1", name: "Alice", manager: { id: "2", name: "Bob" } }
type User = Infer<UserSchema>;[!NOTE] Using a getter to define a field's type automatically makes it
optional. This protects against infinite default value loops.
Accepting any value
Use unknown() when you need to accept dynamic or untyped data:
const Metadata = object({
id: string(),
data: unknown(), // accepts any value
});
parse(Metadata, { id: "123", data: { anything: "goes", nested: [1, 2, 3] } });
// → { id: "123", data: { anything: "goes", nested: [1, 2, 3] } }API
Primitives
string(); // default: ""
number(); // default: 0
boolean(); // default: false
literal(v); // default: v (accepts any value of same base type)Composites
object({ key: schema }); // preserves extra keys
array(schema); // coerces non-arrays to single-element
optional(schema); // omits key when undefined
nullable(schema); // converts undefined to null
field(schema, { from: "key" }); // reads from aliased input keyUnions
union(schemaA, schemaB, ...) // scored discriminationUtilities
unknown(); // accepts any value, returns as-is
typed<T>(schema); // explicitly type a schema for circular referencesParsing
parse(schema, value); // returns coerced value
parseWithDiagnostics(schema, value); // returns { value, diagnostics }Union discrimination logic
When parsing a union, Tonic scores each candidate and picks the best match.
Scores are additive. Highest total wins.
| Condition | Score |
| ------------------------------------------------ | ----------- |
| Exact literal match | +200 |
| Nullable schema + null value | +150 |
| Type match (string/number/boolean/array) | +80 to +100 |
| Discriminator field matches exactly | +50 |
| Required property present | +5 |
| Property value matches expected type | +2 |
| Input key exists in schema | +1 |
| Required property missing | -10 |
| Discriminator field has wrong type | -50 |
Discrimination works recursively on nested objects:
const A = object({ inner: object({ foo: string() }) }, "A");
const B = object({ inner: object({ bar: string() }) }, "B");
const Schema = union(A, B);
parse(Schema, { inner: { bar: "hello" } });
// Selects B because nested "bar" matches B's structureInspecting discrimination
const { value, diagnostics } = parseWithDiagnostics(Event, input);
// Find the union_selection diagnostic
const selection = diagnostics.find((d) => d.kind === "union_selection");
if (selection) {
selection.details.chosenIndex; // index of winning schema
selection.details.chosenName; // name if object schema had one
selection.details.reason; // "exact match" | "type match" | "best score"
}Design principles
Never throw. Parse functions return values. Malformed input produces degraded but usable output. Your app keeps running.
Preserve unknown data. Extra object keys pass through unchanged. Newer API responses work with older client schemas.
Coerce at the boundary. Type conversion happens during parsing. After parsing, your code works with correctly-typed data.
Defaults over nulls. Missing primitives become zero values ("", 0, false), not null. Use nullable() or optional() explicitly when you want those semantics.
Stay small. The entire library is under 2.5kb gzipped. SDKs ship this to end users, so size matters.
When to Use What
| Scenario | Tool | | ------------------------------------------- | ----- | | Validating user form input | Zod | | Validating webhook payloads you define | Zod | | Consuming external APIs | Tonic | | Consuming your own APIs across version skew | Tonic | | Config files that must be strictly correct | Zod | | Config files that should degrade gracefully | Tonic |
License
MIT
