npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, πŸ‘‹, I’m Ryan HefnerΒ  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you πŸ™

Β© 2026 – Pkg Stats / Ryan Hefner

@stamkavid/agent-cli

v0.3.1

Published

πŸ€– Scaffold AI agent projects instantly - zero configuration, just works!

Readme

πŸ€– AgentCLI - AI Agent Project Scaffolding Framework

Python NPM License: MIT Code style: black Imports: isort Type checked with mypy

Scaffold AI agent projects in minutes, not hours. The most focused and simplified project setup experience for AI agent development.

⚑ Now available for both Python and NPM ecosystems - choose your preferred installation method!

Demo GIF Placeholder

Quick Start β€’ Project Structure β€’ CLI Commands β€’ Examples β€’ Development β€’ Contributing


Quick Start

Installation Options

Python Ecosystem (Recommended for Python developers)

# Global installation with pipx (recommended) - works everywhere
pipx install agent-cli

# Or use pip globally
pip install --user agent-cli

# Or in current environment
pip install agent-cli

NPM Ecosystem (For Node.js developers)

# Coming soon! NPM package is in development
# For now, use the Python version or install from source

# Alternative: Run from source (requires Python)
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -e .
npm install
node bin/agent-cli.js my-awesome-project

Create Your First AI Agent Project

# Zero-config setup - just like Claude Code! πŸŽ‰
agent-cli my-ai-agent-project

# Or even shorter
agent my-project

# Interactive mode
agent-cli

That's it! Your AI agent project structure is ready for development. 🎯

Generated Project Structure

Every scaffolded project follows clean architecture principles with the exact structure you specified:

agent-project/
β”œβ”€β”€ .github/
β”‚   └── workflows/
β”‚       └── ci.yml                  # CI/CD pipeline
β”œβ”€β”€ .gitignore                      # Git ignore rules
β”œβ”€β”€ .env.example                    # Environment template
β”œβ”€β”€ .env                           # Local environment
β”œβ”€β”€ README.md                      # Project documentation
β”œβ”€β”€ Makefile                       # Build automation
β”œβ”€β”€ Dockerfile                     # Container setup
β”œβ”€β”€ docker-compose.yml             # Multi-container orchestration
β”œβ”€β”€ pyproject.toml                 # Modern Python packaging
β”‚
β”œβ”€β”€ configs/
β”‚   β”œβ”€β”€ agent_config.yaml         # Agent configuration
β”‚   β”œβ”€β”€ llm_config.yaml           # LLM provider settings
β”‚   └── deployment_config.yaml    # Deployment settings
β”‚
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ knowledge_base/            # Knowledge storage
β”‚   └── evaluation/                # Evaluation datasets
β”‚
β”œβ”€β”€ k8s/
β”‚   β”œβ”€β”€ deployment.yaml           # Kubernetes deployment
β”‚   └── service.yaml              # Kubernetes service
β”‚
β”œβ”€β”€ notebooks/
β”‚   β”œβ”€β”€ 01_prompt_engineering.ipynb     # Prompt development
β”‚   β”œβ”€β”€ 02_prompt_management.ipynb      # Prompt versioning
β”‚   β”œβ”€β”€ 03_memory_system.ipynb          # Memory experiments
β”‚   β”œβ”€β”€ 04_tool_integration.ipynb       # Tool development
β”‚   β”œβ”€β”€ 05_langgraph_workflows.ipynb    # Workflow design
β”‚   └── 06_evaluation.ipynb             # Performance evaluation
β”‚
β”œβ”€β”€ src/agent_project/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ config.py                  # Configuration management
β”‚   β”œβ”€β”€ main.py                    # Application entry point
β”‚   β”‚
β”‚   β”œβ”€β”€ agent/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ base_agent.py          # Abstract base agent
β”‚   β”‚   β”œβ”€β”€ langgraph_agent.py     # LangGraph implementation
β”‚   β”‚   └── state_manager.py       # State persistence
β”‚   β”‚
β”‚   β”œβ”€β”€ memory/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ langmem_integration.py # LangMem integration
β”‚   β”‚   β”œβ”€β”€ vector_store.py        # Vector storage
β”‚   β”‚   └── conversation_memory.py # Conversation context
β”‚   β”‚
β”‚   β”œβ”€β”€ tools/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ base_tool.py           # Tool interface
β”‚   β”‚   β”œβ”€β”€ web_search.py          # Web search capability
β”‚   β”‚   β”œβ”€β”€ file_operations.py     # File handling
β”‚   β”‚   └── custom_tools.py        # Custom tool templates
β”‚   β”‚
β”‚   β”œβ”€β”€ workflows/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ workflow_builder.py    # Workflow construction
β”‚   β”‚   └── common_workflows.py    # Pre-built workflows
β”‚   β”‚
β”‚   β”œβ”€β”€ prompts/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ prompt_manager.py      # Prompt lifecycle
β”‚   β”‚   β”œβ”€β”€ prompt_library.py      # Prompt collection
β”‚   β”‚   β”œβ”€β”€ templates/
β”‚   β”‚   β”‚   β”œβ”€β”€ system_prompts.py  # System prompt templates
β”‚   β”‚   β”‚   β”œβ”€β”€ user_prompts.py    # User prompt templates
β”‚   β”‚   β”‚   β”œβ”€β”€ tool_prompts.py    # Tool prompt templates
β”‚   β”‚   β”‚   └── workflow_prompts.py # Workflow prompts
β”‚   β”‚   └── versions/
β”‚   β”‚       β”œβ”€β”€ v1_prompts.py      # Version 1 prompts
β”‚   β”‚       └── v2_prompts.py      # Version 2 prompts
β”‚   β”‚
β”‚   β”œβ”€β”€ llm/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ client.py              # LLM client abstraction
β”‚   β”‚   └── prompt_executor.py     # Prompt execution
β”‚   β”‚
β”‚   β”œβ”€β”€ api/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ app.py                 # FastAPI application
β”‚   β”‚   β”œβ”€β”€ routes.py              # API endpoints
β”‚   β”‚   └── schemas.py             # Pydantic schemas
β”‚   β”‚
β”‚   β”œβ”€β”€ observability/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ opik_integration.py    # Opik monitoring
β”‚   β”‚   └── metrics.py             # Custom metrics
β”‚   β”‚
β”‚   └── utils/
β”‚       β”œβ”€β”€ __init__.py
β”‚       β”œβ”€β”€ logging.py             # Logging configuration
β”‚       └── helpers.py             # Utility functions
β”‚
β”œβ”€β”€ tools/
β”‚   β”œβ”€β”€ run_agent.py               # Agent execution script
β”‚   β”œβ”€β”€ evaluate_agent.py          # Performance evaluation
β”‚   β”œβ”€β”€ populate_memory.py         # Memory initialization
β”‚   β”œβ”€β”€ manage_prompts.py          # Prompt management
β”‚   └── deploy.py                  # Deployment utilities
β”‚
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ test_agent.py              # Agent testing
β”‚   β”œβ”€β”€ test_memory.py             # Memory testing
β”‚   β”œβ”€β”€ test_tools.py              # Tool testing
β”‚   └── test_workflows.py          # Workflow testing
β”‚
└── docs/
    β”œβ”€β”€ getting_started.md         # Quick start guide
    β”œβ”€β”€ configuration.md           # Configuration guide
    └── deployment.md              # Deployment guide

CLI Commands

| Command | Description | Example | |---------|-------------|---------| | create | Create new AI agent project scaffold | agent-cli create chatbot-project | | list-templates | Show available project templates | agent-cli list-templates | | validate-templates | Validate all project templates | agent-cli validate-templates | | validate | Validate a project name | agent-cli validate my-project | | info | Show CLI information | agent-cli info |


Quick Examples

Conversational Agent Project

# Create a customer service chatbot project
agent-cli create customer-service-bot

# Navigate to project
cd customer-service-bot

# Run the included quickstart
cd quickstart && python quickstart.py

# Start development
make dev-setup

Research Assistant Project

# Create a research agent project
agent-cli create research-assistant

# Navigate to project
cd research-assistant

# Explore the generated structure
ls -la

# Check the notebooks for experimentation
jupyter lab notebooks/

Task Automation Project

# Create an automation agent project
agent-cli create workflow-automation

# Navigate to project
cd workflow-automation

# Review the generated architecture
tree src/

# Start development
make install

Development Workflow

1. Scaffold & Setup

agent-cli my-agent-project
cd my-agent-project

2. Explore & Customize

# Review generated structure
tree src/

# Check configuration
cat configs/agent_config.yaml

# Explore notebooks
jupyter lab notebooks/

3. Develop & Test

# Install dependencies
pip install -e .

# Run tests
pytest

# Start development
make dev-setup

Testing

# Run all tests
pytest

# Run with coverage
pytest --cov=src/agent_cli --cov-report=html

πŸ”§ Development

# Clone and setup
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
pip install -e .[dev]

# Run tests
pytest

# Format code
black src/ && isort src/

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests and ensure they pass
  5. Submit a pull request

Troubleshooting

Common Issues

Project name validation fails:

# Both formats work - CLI handles conversion automatically
agent-cli create my-agent-project  # βœ… Good (creates my-agent-project/ directory)
agent-cli create my_agent_project  # βœ… Good (creates my_agent_project/ directory)
agent-cli create "my agent!"       # ❌ Bad (invalid characters)

Template validation errors:

# Validate all templates
agent-cli validate-templates

Permission errors:

# Ensure write permissions
chmod +w /path/to/output/directory

NPM-Specific Issues

NPM package not found:

# The NPM package hasn't been published yet
# Use the Python version instead:
pipx install agent-cli

# Or install from source:
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
python3 -m venv venv
source venv/bin/activate
pip install -e .

Python not found (NPM users):

# Install Python first
# Visit: https://python.org/downloads/

# Then create virtual environment and install
python3 -m venv venv
source venv/bin/activate
pip install -e .

Manual Python package installation:

# If auto-installation fails, create venv first
python3 -m venv venv
source venv/bin/activate
pip install agent-cli

# Or with pipx (recommended)
pipx install agent-cli

Debug Mode

# Enable verbose output
agent-cli create my-agent-project --verbose
agent-cli validate-templates --verbose

License

This project is licensed under the MIT License - see the LICENSE file for details.


Links


Acknowledgments

Inspiration

This project structure was inspired by the amazing work of Miguel Otero Pedrido (@MichaelisTrofficus).

Check out his work:


Made with ❀️ by Stamatis Kavidopoulos

GitHub LinkedIn

Ready to scaffold amazing AI agent projects? Start creating today! πŸš€