@stamkavid/agent-cli
v0.3.1
Published
π€ Scaffold AI agent projects instantly - zero configuration, just works!
Maintainers
Readme
π€ AgentCLI - AI Agent Project Scaffolding Framework
Scaffold AI agent projects in minutes, not hours. The most focused and simplified project setup experience for AI agent development.
β‘ Now available for both Python and NPM ecosystems - choose your preferred installation method!

Quick Start β’ Project Structure β’ CLI Commands β’ Examples β’ Development β’ Contributing
Quick Start
Installation Options
Python Ecosystem (Recommended for Python developers)
# Global installation with pipx (recommended) - works everywhere
pipx install agent-cli
# Or use pip globally
pip install --user agent-cli
# Or in current environment
pip install agent-cliNPM Ecosystem (For Node.js developers)
# Coming soon! NPM package is in development
# For now, use the Python version or install from source
# Alternative: Run from source (requires Python)
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e .
npm install
node bin/agent-cli.js my-awesome-projectCreate Your First AI Agent Project
# Zero-config setup - just like Claude Code! π
agent-cli my-ai-agent-project
# Or even shorter
agent my-project
# Interactive mode
agent-cliThat's it! Your AI agent project structure is ready for development. π―
Generated Project Structure
Every scaffolded project follows clean architecture principles with the exact structure you specified:
agent-project/
βββ .github/
β βββ workflows/
β βββ ci.yml # CI/CD pipeline
βββ .gitignore # Git ignore rules
βββ .env.example # Environment template
βββ .env # Local environment
βββ README.md # Project documentation
βββ Makefile # Build automation
βββ Dockerfile # Container setup
βββ docker-compose.yml # Multi-container orchestration
βββ pyproject.toml # Modern Python packaging
β
βββ configs/
β βββ agent_config.yaml # Agent configuration
β βββ llm_config.yaml # LLM provider settings
β βββ deployment_config.yaml # Deployment settings
β
βββ data/
β βββ knowledge_base/ # Knowledge storage
β βββ evaluation/ # Evaluation datasets
β
βββ k8s/
β βββ deployment.yaml # Kubernetes deployment
β βββ service.yaml # Kubernetes service
β
βββ notebooks/
β βββ 01_prompt_engineering.ipynb # Prompt development
β βββ 02_prompt_management.ipynb # Prompt versioning
β βββ 03_memory_system.ipynb # Memory experiments
β βββ 04_tool_integration.ipynb # Tool development
β βββ 05_langgraph_workflows.ipynb # Workflow design
β βββ 06_evaluation.ipynb # Performance evaluation
β
βββ src/agent_project/
β βββ __init__.py
β βββ config.py # Configuration management
β βββ main.py # Application entry point
β β
β βββ agent/
β β βββ __init__.py
β β βββ base_agent.py # Abstract base agent
β β βββ langgraph_agent.py # LangGraph implementation
β β βββ state_manager.py # State persistence
β β
β βββ memory/
β β βββ __init__.py
β β βββ langmem_integration.py # LangMem integration
β β βββ vector_store.py # Vector storage
β β βββ conversation_memory.py # Conversation context
β β
β βββ tools/
β β βββ __init__.py
β β βββ base_tool.py # Tool interface
β β βββ web_search.py # Web search capability
β β βββ file_operations.py # File handling
β β βββ custom_tools.py # Custom tool templates
β β
β βββ workflows/
β β βββ __init__.py
β β βββ workflow_builder.py # Workflow construction
β β βββ common_workflows.py # Pre-built workflows
β β
β βββ prompts/
β β βββ __init__.py
β β βββ prompt_manager.py # Prompt lifecycle
β β βββ prompt_library.py # Prompt collection
β β βββ templates/
β β β βββ system_prompts.py # System prompt templates
β β β βββ user_prompts.py # User prompt templates
β β β βββ tool_prompts.py # Tool prompt templates
β β β βββ workflow_prompts.py # Workflow prompts
β β βββ versions/
β β βββ v1_prompts.py # Version 1 prompts
β β βββ v2_prompts.py # Version 2 prompts
β β
β βββ llm/
β β βββ __init__.py
β β βββ client.py # LLM client abstraction
β β βββ prompt_executor.py # Prompt execution
β β
β βββ api/
β β βββ __init__.py
β β βββ app.py # FastAPI application
β β βββ routes.py # API endpoints
β β βββ schemas.py # Pydantic schemas
β β
β βββ observability/
β β βββ __init__.py
β β βββ opik_integration.py # Opik monitoring
β β βββ metrics.py # Custom metrics
β β
β βββ utils/
β βββ __init__.py
β βββ logging.py # Logging configuration
β βββ helpers.py # Utility functions
β
βββ tools/
β βββ run_agent.py # Agent execution script
β βββ evaluate_agent.py # Performance evaluation
β βββ populate_memory.py # Memory initialization
β βββ manage_prompts.py # Prompt management
β βββ deploy.py # Deployment utilities
β
βββ tests/
β βββ test_agent.py # Agent testing
β βββ test_memory.py # Memory testing
β βββ test_tools.py # Tool testing
β βββ test_workflows.py # Workflow testing
β
βββ docs/
βββ getting_started.md # Quick start guide
βββ configuration.md # Configuration guide
βββ deployment.md # Deployment guideCLI Commands
| Command | Description | Example |
|---------|-------------|---------|
| create | Create new AI agent project scaffold | agent-cli create chatbot-project |
| list-templates | Show available project templates | agent-cli list-templates |
| validate-templates | Validate all project templates | agent-cli validate-templates |
| validate | Validate a project name | agent-cli validate my-project |
| info | Show CLI information | agent-cli info |
Quick Examples
Conversational Agent Project
# Create a customer service chatbot project
agent-cli create customer-service-bot
# Navigate to project
cd customer-service-bot
# Run the included quickstart
cd quickstart && python quickstart.py
# Start development
make dev-setupResearch Assistant Project
# Create a research agent project
agent-cli create research-assistant
# Navigate to project
cd research-assistant
# Explore the generated structure
ls -la
# Check the notebooks for experimentation
jupyter lab notebooks/Task Automation Project
# Create an automation agent project
agent-cli create workflow-automation
# Navigate to project
cd workflow-automation
# Review the generated architecture
tree src/
# Start development
make installDevelopment Workflow
1. Scaffold & Setup
agent-cli my-agent-project
cd my-agent-project2. Explore & Customize
# Review generated structure
tree src/
# Check configuration
cat configs/agent_config.yaml
# Explore notebooks
jupyter lab notebooks/3. Develop & Test
# Install dependencies
pip install -e .
# Run tests
pytest
# Start development
make dev-setupTesting
# Run all tests
pytest
# Run with coverage
pytest --cov=src/agent_cli --cov-report=htmlπ§ Development
# Clone and setup
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
pip install -e .[dev]
# Run tests
pytest
# Format code
black src/ && isort src/Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests and ensure they pass
- Submit a pull request
Troubleshooting
Common Issues
Project name validation fails:
# Both formats work - CLI handles conversion automatically
agent-cli create my-agent-project # β
Good (creates my-agent-project/ directory)
agent-cli create my_agent_project # β
Good (creates my_agent_project/ directory)
agent-cli create "my agent!" # β Bad (invalid characters)Template validation errors:
# Validate all templates
agent-cli validate-templatesPermission errors:
# Ensure write permissions
chmod +w /path/to/output/directoryNPM-Specific Issues
NPM package not found:
# The NPM package hasn't been published yet
# Use the Python version instead:
pipx install agent-cli
# Or install from source:
git clone https://github.com/StamKavid/agent-cli.git
cd agent-cli
python3 -m venv venv
source venv/bin/activate
pip install -e .Python not found (NPM users):
# Install Python first
# Visit: https://python.org/downloads/
# Then create virtual environment and install
python3 -m venv venv
source venv/bin/activate
pip install -e .Manual Python package installation:
# If auto-installation fails, create venv first
python3 -m venv venv
source venv/bin/activate
pip install agent-cli
# Or with pipx (recommended)
pipx install agent-cliDebug Mode
# Enable verbose output
agent-cli create my-agent-project --verbose
agent-cli validate-templates --verboseLicense
This project is licensed under the MIT License - see the LICENSE file for details.
Links
- π Python Package: agent-cli on PyPI
- π¦ NPM Package: @stamkavid/agent-cli on npm
- π Documentation: GitHub Repository
- π Issues: GitHub Issues
- π Contributing: Contributing Guide
Acknowledgments
Inspiration
This project structure was inspired by the amazing work of Miguel Otero Pedrido (@MichaelisTrofficus).
Check out his work:
- π’ The Neural Maze - Hub for ML projects with step-by-step explanations
- πΊ YouTube Channel - Tutorials and project showcases
- π§ Newsletter - Latest articles and project updates
- π LinkedIn - Professional profile
Made with β€οΈ by Stamatis Kavidopoulos
Ready to scaffold amazing AI agent projects? Start creating today! π
