@stdlib/blas-base-wasm-scnrm2
v0.1.1
Published
Multiply a vector `x` by a scalar `alpha`.
Readme
scnrm2
Calculate the L2-norm of a complex single-precision floating-point vector.
Installation
npm install @stdlib/blas-base-wasm-scnrm2Usage
var scnrm2 = require( '@stdlib/blas-base-wasm-scnrm2' );scnrm2.main( N, x, strideX )
Calculates the L2-norm of a complex single-precision floating-point vector.
var Complex64Array = require( '@stdlib/array-complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var z = scnrm2.main( 3, x, 1 );
// returns ~9.54The function has the following parameters:
- N: number of indexed elements.
- x: input
Complex64Array. - strideX: index increment for
x.
The N and stride parameters determine which elements in the input strided array are accessed at runtime. For example, to compute the L2-norm of every other element in x,
var Complex64Array = require( '@stdlib/array-complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var z = scnrm2.main( 2, x, 2 );
// returns ~4.24Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Complex64Array = require( '@stdlib/array-complex64' );
// Initial array:
var x0 = new Complex64Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, -2.0, 2.0, 3.0 ] );
// Create a typed array view:
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var z = scnrm2.main( 2, x1, 2 );
// returns ~4.58scnrm2.ndarray( N, x, strideX, offsetX )
Calculates the L2-norm of a complex single-precision floating-point vector using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array-complex64' );
var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var z = scnrm2.ndarray( 3, x, 1, 0 );
// returns ~9.54The function has the following additional parameters:
- offsetX: starting index for
x.
While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the L2-norm for every other value in x starting from the second value,
var Complex64Array = require( '@stdlib/array-complex64' );
var x = new Complex64Array( [ 2.0, 1.0, 2.0, 2.0, -2.0, -2.0, 2.0, 3.0 ] );
var z = scnrm2.ndarray( 2, x, 2, 1 );
// returns ~4.58Module
scnrm2.Module( memory )
Returns a new WebAssembly module wrapper instance which uses the provided WebAssembly memory instance as its underlying memory.
var Memory = require( '@stdlib/wasm-memory' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new scnrm2.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();scnrm2.Module.prototype.main( N, xp, sx )
Computes the L2-norm of a complex single-precision floating-point vector.
var Memory = require( '@stdlib/wasm-memory' );
var oneTo = require( '@stdlib/array-one-to' );
var Complex64Array = require( '@stdlib/array-complex64' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new scnrm2.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'complex64';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float32' );
var x = new Complex64Array( xbuf.buffer );
mod.write( xptr, x );
// Perform computation:
var out = mod.main( N, xptr, 1 );
// returns ~19.62The function has the following parameters:
- N: number of indexed elements.
- xp: input
Complex64Arraypointer (i.e., byte offset). - sx: index increment for
x.
scnrm2.Module.prototype.ndarray( N, xp, sx, ox )
Computes the L2-norm of a complex single-precision floating-point vector using alternative indexing semantics.
var Memory = require( '@stdlib/wasm-memory' );
var oneTo = require( '@stdlib/array-one-to' );
var Complex64Array = require( '@stdlib/array-complex64' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new scnrm2.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'complex64';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float32' );
var x = new Complex64Array( xbuf.buffer );
mod.write( xptr, x );
// Perform computation:
var out = mod.ndarray( N, xptr, 1, 0 );
// returns ~19.62The function has the following additional parameters:
- ox: starting index for
x.
Notes
- If
N <= 0, bothmainandndarraymethods return0.0. - This package implements routines using WebAssembly. When provided arrays which are not allocated on a
scnrm2module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using@stdlib/blas-base/scnrm2. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in@stdlib/blas/base/scnrm2. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other. scnrm2()corresponds to the BLAS level 1 functionscnrm2.
Examples
var oneTo = require( '@stdlib/array-one-to' );
var Complex64Array = require( '@stdlib/array-complex64' );
var scnrm2 = require( '@stdlib/blas-base-wasm-scnrm2' );
function main() {
var xbuf;
var out;
var x;
var N;
// Specify a vector length:
N = 5;
// Create an input array:
xbuf = oneTo( N*2, 'float32' );
x = new Complex64Array( xbuf.buffer );
// Perform computation:
out = scnrm2.ndarray( N, x, 1, 0 );
// Print the result:
console.log( out );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
