npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@stdlib/blas-base-zscal

v0.1.1

Published

Scale a double-precision complex floating-point vector by a double-precision complex floating-point constant.

Downloads

256

Readme

zscal

NPM version Build Status Coverage Status

Scales a double-precision complex floating-point vector by a double-precision complex floating-point constant.

Installation

npm install @stdlib/blas-base-zscal

Usage

var zscal = require( '@stdlib/blas-base-zscal' );

zscal( N, alpha, x, strideX )

Scales values from x by alpha.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var x = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = new Complex128( 2.0, 0.0 );

zscal( 3, alpha, x, 1 );
// x => <Complex128Array>[ 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 ]

The function has the following parameters:

The N and stride parameters determine how values from x are scaled by alpha. For example, to scale every other value in x by alpha,

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var alpha = new Complex128( 2.0, 0.0 );

zscal( 2, alpha, x, 2 );
// x => <Complex128Array>[ 2.0, 4.0, 3.0, 4.0, 10.0, 12.0, 7.0, 8.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

// Initial array:
var x0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

// Define a scalar constant:
var alpha = new Complex128( 2.0, 2.0 );

// Create an offset view:
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

// Scales every other value from `x1` by `alpha`...
zscal( 3, alpha, x1, 1 );
// x0 => <Complex128Array>[ 1.0, 2.0, -2.0, 14.0, -2.0, 22.0, -2.0, 30.0 ]

zscal.ndarray( N, alpha, x, strideX, offsetX )

Scales values from x by alpha using alternative indexing semantics.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var alpha = new Complex128( 2.0, 2.0 );

zscal.ndarray( 3, alpha, x, 1, 0 );
// x => <Complex128Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to scale every other value in the input strided array starting from the second element,

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var alpha = new Complex128( 2.0, 2.0 );

zscal.ndarray( 2, alpha, x, 2, 1 );
// x => <Complex128Array>[ 1.0, 2.0, -2.0, 14.0, 5.0, 6.0, -2.0, 30.0 ]

Notes

  • If N <= 0, both functions return x unchanged.
  • zscal() corresponds to the BLAS level 1 function zscal.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var zscal = require( '@stdlib/blas-base-zscal' );

function rand() {
    return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

var x = filledarrayBy( 10, 'complex128', rand );
console.log( x.toString() );

var alpha = new Complex128( 2.0, 2.0 );
console.log( alpha.toString() );

// Scales elements from `x` by `alpha`:
zscal( x.length, alpha, x, 1 );
console.log( x.get( x.length-1 ).toString() );

C APIs

Usage

#include "stdlib/blas/base/zscal.h"

c_zscal( N, alpha, *X, strideX )

Scales values from X by alpha.

#include "stdlib/complex/float64/ctor.h"

double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );

c_zscal( 4, alpha, (void *)x, 1 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] stdlib_complex128_t scalar constant.
  • X: [inout] void* input array.
  • strideX: [in] CBLAS_INT index increment for X.
void c_zscal( const CBLAS_INT N, const stdlib_complex128_t alpha, void *X, const CBLAS_INT strideX );

c_zscal_ndarray( N, alpha, *X, strideX, offsetX )

Scales values from X by alpha using alternative indexing semantics.

#include "stdlib/complex/float64/ctor.h"

double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );

c_zscal_ndarray( 4, alpha, (void *)x, 1, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] stdlib_complex128_t scalar constant.
  • X: [inout] void* input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • offsetX: [in] CBLAS_INT starting index for X.
void c_zscal_ndarray( const CBLAS_INT N, const stdlib_complex128_t alpha, void *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/base/zscal.h"
#include "stdlib/complex/float64/ctor.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array of interleaved real and imaginary components:
    double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

    // Create a complex scalar:
    const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );

    // Specify the number of elements:
    const int N = 4;

    // Specify stride length:
    const int strideX = 1;

    // Scale the elements of the array:
    c_zscal( N, alpha, (void *)x, strideX );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %lf + %lfj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
    }

    // Scale the elements of the array using alternative indexing semantics:
    c_zscal_ndarray( N, alpha, (void *)x, -strideX, N-1 );

    // Print the result:
    for ( int i = 0; i < N; i++ ) {
        printf( "x[ %i ] = %lf + %lfj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2026. The Stdlib Authors.