@stdlib/blas-ext-base-dnanasum
v0.3.1
Published
Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.
Readme
dnanasum
Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring
NaNvalues.
The L1 norm is defined as
Installation
npm install @stdlib/blas-ext-base-dnanasumUsage
var dnanasum = require( '@stdlib/blas-ext-base-dnanasum' );dnanasum( N, x, strideX )
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var v = dnanasum( x.length, x, 1 );
// returns 5.0The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array. - strideX: stride length.
The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) for every other element:
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var v = dnanasum( 4, x, 2 );
// returns 5.0Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dnanasum( 4, x1, 2 );
// returns 9.0dnanasum.ndarray( N, x, strideX, offsetX )
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var v = dnanasum.ndarray( 4, x, 1, 0 );
// returns 5.0The function has the following additional parameters:
- offsetX: starting index.
While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) for every other value in the strided array starting from the second value:
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dnanasum.ndarray( 4, x, 2, 1 );
// returns 9.0Notes
- If
N <= 0, both functions return0.0.
Examples
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var dnanasum = require( '@stdlib/blas-ext-base-dnanasum' );
function rand() {
if ( bernoulli( 0.5 ) < 1 ) {
return discreteUniform( 0, 100 );
}
return NaN;
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var v = dnanasum( x.length, x, 1 );
console.log( v );C APIs
Usage
#include "stdlib/blas/ext/base/dnanasum.h"stdlib_strided_dnanasum( N, *X, strideX )
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };
double v = stdlib_strided_dnanasum( 4, x, 1 );
// returns 7.0The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*input array. - strideX:
[in] CBLAS_INTstride length.
double stdlib_strided_dnanasum( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );stdlib_strided_dnanasum_ndarray( N, *X, strideX, offsetX )
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using alternative indexing semantics.
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };
double v = stdlib_strided_dnanasum_ndarray( 4, x, 1, 0 );
// returns 7.0The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*input array. - strideX:
[in] CBLAS_INTstride length. - offsetX:
[in] CBLAS_INTstarting index.
double stdlib_strided_dnanasum_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );Examples
#include "stdlib/blas/ext/base/dnanasum.h"
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, -3.0, -4.0, 5.0, -6.0, -7.0, 8.0, 0.0/0.0, 0.0/0.0 };
// Specify the number of elements:
const int N = 5;
// Specify the stride length:
const int strideX = 2;
// Compute the sum:
double v = stdlib_strided_dnanasum( N, x, strideX );
// Print the result:
printf( "sumabs: %lf\n", v );
}See Also
@stdlib/blas-base/dasum: compute the sum of absolute values (L1 norm).@stdlib/blas-ext/base/dasumpw: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
