@stdlib/blas-ext-base-drrss
v0.1.1
Published
Compute the square root of the residual sum of squares of two double-precision floating-point strided arrays.
Readme
drrss
Calculate the square root of the residual sum of squares of two double-precision floating-point strided arrays.
The square root of the residual sum of squares is defined as
Installation
npm install @stdlib/blas-ext-base-drrssUsage
var drrss = require( '@stdlib/blas-ext-base-drrss' );drrss( N, x, strideX, y, strideY )
Computes the square root of the residual sum of squares of two double-precision floating-point strided arrays.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( [ 1.0, 1.0, -4.0 ] );
var z = drrss( x.length, x, 1, y, 1 );
// returns ~6.7The function has the following parameters:
- N: number of indexed elements.
- x: first input
Float64Array. - strideX: stride length for
x. - y: second input
Float64Array. - strideY: stride length for
y.
The N and stride parameters determine which elements in strided arrays are accessed at runtime. For example, to compute the residual sum of squares of every other element in x and y
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( [ 2.0, 1.0, 2.0, 1.0, -2.0, 2.0, 3.0, 4.0 ] );
var z = drrss( x.length, x, 1, y, 1 );
// returns ~8.485Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( [ 8.0, -2.0, 3.0, -2.0, 7.0, -2.0, 0.0, -1.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var z = drrss( 4, x1, 2, y1, 2 );
// returns ~7.071If N is less than or equal to 0, the function returns 0.
drrss.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the square root of the residual sum of squares of two double-precision floating-point strided arrays using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( [ 1.0, 1.0, -4.0 ] );
var z = drrss.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns ~6.7The function has the following additional parameters:
- offsetX: starting index for
x. - offsetY: starting index for
y.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the square root of the residual sum of squares for every other element in x and y starting from the second element
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, 6.0 ] );
var y = new Float64Array( [ 8.0, -2.0, 3.0, -2.0, 7.0, -2.0, 0.0, -1.0, 4.0 ] );
var z = drrss.ndarray( 4, x, 2, 1, y, 2, 1 );
// returns ~7.071Notes
- If
N <= 0, both functions return0.0.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var drrss = require( '@stdlib/blas-ext-base-drrss' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, -50, 50, opts );
console.log( x );
var y = discreteUniform( 10, -50, 50, opts );
console.log( y );
var d = drrss( x.length, x, 1, y, 1 );
console.log( d );C APIs
Usage
#include "stdlib/blas/ext/base/drrss.h"stdlib_strided_drrss( N, *X, strideX, *Y, strideY )
Computes the square root of the residual sum of squares of two double-precision floating-point strided arrays.
const double x[] = { 1.0, -2.0, 2.0 };
const double y[] = { 1.0, 1.0, -4.0 };
double z = stdlib_strided_drrss( 3, x, 1, y, 1 );
// returns ~6.7The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*first input array. - strideX:
[in] CBLAS_INTstride length forX. - Y:
[in] double*second input array. - strideY:
[in] CBLAS_INTstride length forY.
double stdlib_strided_drrss( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const double *Y, const CBLAS_INT strideY );stdlib_strided_drrss_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )
Computes the square root of the residual sum of squares of two double-precision floating-point strided arrays using alternative indexing semantics.
const double x[] = { 1.0, -2.0, 2.0 };
const double y[] = { 1.0, 1.0, -4.0 };
double v = stdlib_strided_drrss_ndarray( 3, x, 1, 0, 1, 0 );
// returns ~6.7The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*first input array. - strideX:
[in] CBLAS_INTstride length forX. - offsetX:
[in] CBLAS_INTstarting index forX. - Y:
[in] double*second input array. - strideY:
[in] CBLAS_INTstride length forY. - offsetY:
[in] CBLAS_INTstarting index forY.
double stdlib_strided_drrss_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );Examples
#include "stdlib/blas/ext/base/drrss.h"
#include <stdio.h>
int main( void ) {
// Create two strided arrays:
const double x[] = { 1.0, -2.0, -4.0, 5.0, 0.0, 3.0 };
const double y[] = { 5.0, 12.0, -8.0, 15.0, 9.0, 0.0 };
// Specify the number of elements:
const int N = 5;
// Specify the stride lengths:
const int strideX = 1;
const int strideY = 1;
// Compute the square root of the residual sum of squares of `x` and `y`:
double d = stdlib_strided_drrss( N, x, strideX, y, strideY );
// Print the result:
printf( "rrss: %lf\n", d );
// Specify index offsets:
const int offsetX = 1;
const int offsetY = 1;
// Compute the square root of the residual sum of squares of `x` and `y` with offsets:
d = stdlib_strided_drrss_ndarray( N, x, strideX, offsetX, y, strideY, offsetY );
// Print the result:
printf( "rrss: %lf\n", d );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
