@stdlib/blas-ext-base-drsskbn
v0.1.1
Published
Compute the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan-Babuška algorithm.
Readme
drsskbn
Calculate the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan–Babuška algorithm.
The residual sum of squares (also referred to as the sum of squared residuals (SSR) and the sum of squared errors (SSE)) is defined as
Installation
npm install @stdlib/blas-ext-base-drsskbnUsage
var drsskbn = require( '@stdlib/blas-ext-base-drsskbn' );drsskbn( N, x, strideX, y, strideY )
Computes the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan–Babuška algorithm.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( [ 1.0, 1.0, -4.0 ] );
var z = drsskbn( x.length, x, 1, y, 1 );
// returns 45.0The function has the following parameters:
- N: number of indexed elements.
- x: first input
Float64Array. - strideX: stride length for
x. - y: second input
Float64Array. - strideY: stride length for
y.
The N and stride parameters determine which elements in strided arrays are accessed at runtime. For example, to compute the residual sum of squares of every other element in x and y
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( [ 2.0, 1.0, 2.0, 1.0, -2.0, 2.0, 3.0, 4.0 ] );
var z = drsskbn( x.length, x, 1, y, 1 );
// returns 72.0Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( [ 8.0, -2.0, 3.0, -2.0, 7.0, -2.0, 0.0, -1.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var z = drsskbn( 4, x1, 2, y1, 2 );
// returns 50.0drsskbn.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( [ 1.0, 1.0, -4.0 ] );
var z = drsskbn.ndarray( x.length, x, 1, 0, y, 1, 0 );
// returns 45.0The function has the following additional parameters:
- offsetX: starting index for
x. - offsetY: starting index for
y.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the residual sum of squares for every other element in x and y starting from the second element
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, 6.0 ] );
var y = new Float64Array( [ 8.0, -2.0, 3.0, -2.0, 7.0, -2.0, 0.0, -1.0, 4.0 ] );
var z = drsskbn.ndarray( 4, x, 2, 1, y, 2, 1 );
// returns 50.0Notes
- If
N <= 0, both functions return0.0.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var drsskbn = require( '@stdlib/blas-ext-base-drsskbn' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, -50, 50, opts );
console.log( x );
var y = discreteUniform( 10, -50, 50, opts );
console.log( y );
var d = drsskbn( x.length, x, 1, y, 1 );
console.log( d );C APIs
Usage
#include "stdlib/blas/ext/base/drsskbn.h"stdlib_strided_drsskbn( N, *X, strideX, *Y, strideY )
Computes the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan–Babuška algorithm.
const double x[] = { 1.0, -2.0, 2.0 };
const double y[] = { 1.0, 1.0, -4.0 };
double z = stdlib_strided_drsskbn( 3, x, 1, y, 1 );
// returns 45.0The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*first input array. - strideX:
[in] CBLAS_INTstride length forX. - Y:
[in] double*second input array. - strideY:
[in] CBLAS_INTstride length forY.
double stdlib_strided_drsskbn( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const double *Y, const CBLAS_INT strideY );stdlib_strided_drsskbn_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )
Computes the residual sum of squares of two double-precision floating-point strided arrays using an improved Kahan–Babuška algorithm and alternative indexing semantics.
const double x[] = { 1.0, -2.0, 2.0 };
const double y[] = { 1.0, 1.0, -4.0 };
double v = stdlib_strided_drsskbn_ndarray( 3, x, 1, 0, y, 1, 0 );
// returns 45.0The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] double*first input array. - strideX:
[in] CBLAS_INTstride length forX. - offsetX:
[in] CBLAS_INTstarting index forX. - Y:
[in] double*second input array. - strideY:
[in] CBLAS_INTstride length forY. - offsetY:
[in] CBLAS_INTstarting index forY.
double stdlib_strided_drsskbn_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );Examples
#include "stdlib/blas/ext/base/drsskbn.h"
#include <stdio.h>
int main( void ) {
// Create two strided arrays:
const double x[] = { 1.0, -2.0, -4.0, 5.0, 0.0, 3.0 };
const double y[] = { 5.0, 12.0, -8.0, 15.0, 9.0, 0.0 };
// Specify the number of elements:
const int N = 5;
// Specify the stride lengths:
const int strideX = 1;
const int strideY = 1;
// Compute the residual sum of squares of `x` and `y`:
double d = stdlib_strided_drsskbn( N, x, strideX, y, strideY );
// Print the result:
printf( "rss: %lf\n", d );
// Specify index offsets:
const int offsetX = 1;
const int offsetY = 1;
// Compute the residual sum of squares of `x` and `y` with offsets:
d = stdlib_strided_drsskbn_ndarray( N, x, strideX, offsetX, y, strideY, offsetY );
// Print the result:
printf( "rss: %lf\n", d );
}References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
