@stdlib/blas-ext-base-gsort2ins
v0.3.1
Published
Simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.
Readme
gsort2ins
Simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.
Installation
npm install @stdlib/blas-ext-base-gsort2insUsage
var gsort2ins = require( '@stdlib/blas-ext-base-gsort2ins' );gsort2ins( N, order, x, strideX, y, strideY )
Simultaneously sorts two strided arrays based on the sort order of the first array using insertion sort.
var x = [ 1.0, -2.0, 3.0, -4.0 ];
var y = [ 0.0, 1.0, 2.0, 3.0 ];
gsort2ins( x.length, 1.0, x, 1, y, 1 );
console.log( x );
// => [ -4.0, -2.0, 1.0, 3.0 ]
console.log( y );
// => [ 3.0, 1.0, 0.0, 2.0 ]The function has the following parameters:
- N: number of indexed elements.
- order: sort order. If
order < 0.0, the input strided arrayxis sorted in decreasing order. Iforder > 0.0, the input strided arrayxis sorted in increasing order. Iforder == 0.0, the input strided arrays are left unchanged. - x: first input
Arrayortyped array. - strideX: stride length for
x. - y: second input
Arrayortyped array. - strideY: stride length for
y.
The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to sort every other element:
var x = [ 1.0, -2.0, 3.0, -4.0 ];
var y = [ 0.0, 1.0, 2.0, 3.0 ];
gsort2ins( 2, -1.0, x, 2, y, 2 );
console.log( x );
// => [ 3.0, -2.0, 1.0, -4.0 ]
console.log( y );
// => [ 2.0, 1.0, 0.0, 3.0 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Sort every other element...
gsort2ins( 2, -1.0, x1, 2, y1, 2 );
console.log( x0 );
// => <Float64Array>[ 1.0, 4.0, 3.0, 2.0 ]
console.log( y0 );
// => <Float64Array>[ 0.0, 3.0, 2.0, 1.0 ]gsort2ins.ndarray( N, order, x, strideX, offsetX, y, strideY, offsetY )
Simultaneously sorts two strided arrays based on the sort order of the first array using insertion sort and alternative indexing semantics.
var x = [ 1.0, -2.0, 3.0, -4.0 ];
var y = [ 0.0, 1.0, 2.0, 3.0 ];
gsort2ins.ndarray( x.length, 1.0, x, 1, 0, y, 1, 0 );
console.log( x );
// => [ -4.0, -2.0, 1.0, 3.0 ]
console.log( y );
// => [ 3.0, 1.0, 0.0, 2.0 ]The function has the following additional parameters:
- offsetX: starting index for
x. - offsetY: starting index for
y.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to access only the last three elements:
var x = [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ];
var y = [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 ];
gsort2ins.ndarray( 3, 1.0, x, 1, x.length-3, y, 1, y.length-3 );
console.log( x );
// => [ 1.0, -2.0, 3.0, -6.0, -4.0, 5.0 ]
console.log( y );
// => [ 0.0, 1.0, 2.0, 5.0, 3.0, 4.0 ]Notes
- If
N <= 0ororder == 0.0, both functions leavexandyunchanged. - Both functions support array-like objects having getter and setter accessors for array element access (e.g.,
@stdlib/array-base/accessor). - The algorithm distinguishes between
-0and+0. When sorted in increasing order,-0is sorted before+0. When sorted in decreasing order,-0is sorted after+0. - The algorithm sorts
NaNvalues to the end. When sorted in increasing order,NaNvalues are sorted last. When sorted in decreasing order,NaNvalues are sorted first. - The algorithm has space complexity
O(1)and worst case time complexityO(N^2). - The algorithm is efficient for small strided arrays (typically
N <= 20) and is particularly efficient for sorting strided arrays which are already substantially sorted. - The algorithm is stable, meaning that the algorithm does not change the order of strided array elements which are equal or equivalent (e.g.,
NaNvalues). - The input strided arrays are sorted in-place (i.e., the input strided arrays are mutated).
- Depending on the environment, the typed versions (
dsort2ins,ssort2ins, etc.) are likely to be significantly more performant.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var gsort2ins = require( '@stdlib/blas-ext-base-gsort2ins' );
var x = discreteUniform( 10, -100, 100, {
'dtype': 'float64'
});
var y = discreteUniform( 10, -100, 100, {
'dtype': 'float64'
});
console.log( x );
console.log( y );
gsort2ins( x.length, -1.0, x, -1, y, -1 );
console.log( x );
console.log( y );See Also
@stdlib/blas-ext/base/dsort2ins: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using insertion sort.@stdlib/blas-ext/base/gsortins: sort a strided array using insertion sort.@stdlib/blas-ext/base/ssort2ins: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using insertion sort.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
