@stdlib/blas-ext-base-ndarray-gcusumpw
v0.1.1
Published
Compute the cumulative sum of a one-dimensional ndarray using pairwise summation.
Readme
gcusumpw
Compute the cumulative sum of a one-dimensional ndarray using pairwise summation.
Installation
npm install @stdlib/blas-ext-base-ndarray-gcusumpwUsage
var gcusumpw = require( '@stdlib/blas-ext-base-ndarray-gcusumpw' );gcusumpw( arrays )
Computes the cumulative sum of a one-dimensional ndarray using pairwise summation.
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var scalar2ndarray = require( '@stdlib/ndarray-base-from-scalar' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var xbuf = [ 1.0, 3.0, 4.0, 2.0 ];
var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
var ybuf = [ 0.0, 0.0, 0.0, 0.0 ];
var y = new ndarray( 'generic', ybuf, [ 4 ], [ 1 ], 0, 'row-major' );
var initial = scalar2ndarray( 0.0, 'generic', 'row-major' );
var v = gcusumpw( [ x, y, initial ] );
// returns <ndarray>
var bool = ( v === y );
// returns true
var arr = ndarray2array( v );
// returns [ 1.0, 4.0, 8.0, 10.0 ]The function has the following parameters:
- arrays: array-like object containing a one-dimensional input ndarray, a one-dimensional output ndarray, and a zero-dimensional ndarray containing the initial sum.
Notes
- If provided an empty one-dimensional input ndarray, the function returns the output ndarray unchanged.
- In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var zerosLike = require( '@stdlib/ndarray-zeros-like' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var gcusumpw = require( '@stdlib/blas-ext-base-ndarray-gcusumpw' );
var xbuf = discreteUniform( 10, -50, 50, {
'dtype': 'generic'
});
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );
var y = zerosLike( x );
console.log( ndarray2array( y ) );
var initial = scalar2ndarray( 100.0, {
'dtype': 'generic'
});
var v = gcusumpw( [ x, y, initial ] );
console.log( ndarray2array( v ) );References
- Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
