@stdlib/complex-float32-base-mul-add
v0.1.1
Published
Perform a multiply-add operation involving three single-precision complex floating-point numbers.
Readme
muladd
Perform a multiply-add operation involving three single-precision complex floating-point numbers.
Installation
npm install @stdlib/complex-float32-base-mul-addUsage
var muladd = require( '@stdlib/complex-float32-base-mul-add' );muladd( alpha, x, y )
Performs a multiply-add operation involving three single-precision complex floating-point numbers.
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var z1 = new Complex64( 5.0, 3.0 );
var z2 = new Complex64( -2.0, 1.0 );
var z3 = new Complex64( 7.0, -8.0 );
// Compute `alpha*x + y`:
var v = muladd( z1, z2, z3 );
// returns <Complex64>[ -6.0, -9.0 ]The function supports the following parameters:
- alpha: first complex number
- x: second complex number.
- y: third complex number.
muladd.assign( ar, ai, xr, xi, yr, yi, out, strideOut, offsetOut )
Performs a multiply-add operation involving three single-precision complex floating-point numbers and assigns the results to an output strided array.
var Float32Array = require( '@stdlib/array-float32' );
var out = new Float32Array( 2 );
var v = muladd.assign( 5.0, 3.0, -2.0, 1.0, 7.0, -8.0, out, 1, 0 );
// returns <Float32Array>[ -6.0, -9.0 ]
var bool = ( out === v );
// returns trueThe function supports the following parameters:
- ar: real component of the first complex number.
- ai: imaginary component of the first complex number.
- xr: real component of the second complex number.
- xi: imaginary component of the second complex number.
- yr: real component of the third complex number.
- yi: imaginary component of the third complex number.
- out: output array.
- strideOut: stride length for
out. - offsetOut: starting index for
out.
muladd.strided( alpha, sa, oa, x, sx, ox, y, sy, oy, out, so, oo )
Performs a multiply-add operation involving three single-precision complex floating-point numbers stored in real-valued strided array views and assigns results to a provided strided output array.
var Float32Array = require( '@stdlib/array-float32' );
var z1 = new Float32Array( [ 5.0, 3.0 ] );
var z2 = new Float32Array( [ -2.0, 1.0 ] );
var z3 = new Float32Array( [ 7.0, -8.0 ] );
var out = new Float32Array( 2 );
var v = muladd.strided( z1, 1, 0, z2, 1, 0, z3, 1, 0, out, 1, 0 );
// returns <Float32Array>[ -6.0, -9.0 ]
var bool = ( out === v );
// returns trueThe function supports the following parameters:
- alpha: first complex number strided array view.
- sa: stride length for
alpha. - oa: starting index for
alpha. - x: second complex number strided array view.
- sx: stride length for
x. - ox: starting index for
x. - y: third complex number strided array view.
- sy: stride length for
y. - oy: starting index for
y. - out: output array.
- so: stride length for
out. - oo: starting index for
out.
Examples
var Complex64Array = require( '@stdlib/array-complex64' );
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var muladd = require( '@stdlib/complex-float32-base-mul-add' );
// Generate arrays of random values:
var z1 = new Complex64Array( discreteUniform( 200, -50, 50 ) );
var z2 = new Complex64Array( discreteUniform( 200, -50, 50 ) );
var z3 = new Complex64Array( discreteUniform( 200, -50, 50 ) );
// Perform element-wise computation:
logEachMap( '( (%s) * (%s) ) + (%s) = %s', z1, z2, z3, muladd );C APIs
Usage
#include "stdlib/complex/float32/base/mul_add.h"stdlib_base_complex64_muladd( alpha, x, y )
Performs a multiply-add operation involving three single-precision complex floating-point numbers.
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/real.h"
#include "stdlib/complex/float32/imag.h"
stdlib_complex64_t z1 = sstdlib_complex64( 5.0f, 3.0f );
stdlib_complex64_t z2 = sstdlib_complex64( -2.0f, 1.0f );
stdlib_complex64_t z3 = sstdlib_complex64( 7.0f, -8.0f );
stdlib_complex64_t out = stdlib_base_complex64_muladd( z1, z2, z3 );
float re = stdlib_complex64_real( out );
// returns -6.0f
float im = stdlib_complex64_imag( out );
// returns -9.0fThe function accepts the following arguments:
- alpha:
[in] stdlib_complex64_tinput value. - z1:
[in] stdlib_complex64_tinput value. - z2:
[in] stdlib_complex64_tinput value.
stdlib_complex64_t stdlib_base_complex64_muladd( const stdlib_complex64_t alpha, const stdlib_complex64_t x, const stdlib_complex64_t y );Examples
#include "stdlib/complex/float32/base/mul_add.h"
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex64_t x[] = {
stdlib_complex64( 3.14f, 1.5f ),
stdlib_complex64( -3.14f, 1.5f ),
stdlib_complex64( 0.0f, -0.0f ),
stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
};
stdlib_complex64_t v;
stdlib_complex64_t y;
float re;
float im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex64_reim( v, &re, &im );
printf( "z = %f + %fi\n", re, im );
y = stdlib_base_complex64_muladd( v, v, v );
stdlib_complex64_reim( y, &re, &im );
printf( "z*z + z = %f + %fi\n", re, im );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
