@stdlib/lapack-base-dgttrf
v0.1.1
Published
Compute an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges
Readme
dgttrf
Compute an
LUfactorization of a real tridiagonal matrixAusing elimination with partial pivoting and row interchanges.
The dgttrf routine computes an LU factorization of a real N-by-N tridiagonal matrix A using elimination with partial pivoting and row interchanges. The factorization has the form:
where L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with non-zeros in only the main diagonal and first two superdiagonals.
For a 5-by-5 tridiagonal matrix A, elements are stored in three arrays:
where:
dlcontains the subdiagonal elements.dcontains the diagonal elements.ducontains the superdiagonal elements.
After factorization, the elements of L and U are used to update the input arrays, where:
dlcontains the multipliers that define unit lower bidiagonal matrixL.dcontains the diagonal elements ofU.duanddu2contain the elements ofUon the first and second superdiagonals.
The resulting L and U matrices have the following structure:
where the l(i) values are stored in DL, the diagonal elements u(i,i) are stored in D, and the superdiagonal elements u(i,i+1) and u(i,i+2) are stored in DU and DU2, respectively.
Installation
npm install @stdlib/lapack-base-dgttrfUsage
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );dgttrf( N, DL, D, DU, DU2, IPIV )
Computes an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and row interchanges.
var Float64Array = require( '@stdlib/array-float64' );
var Int32Array = require( '@stdlib/array-int32' );
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );
var DL = new Float64Array( [ 6.0, 6.0 ] );
var D = new Float64Array( [ 20.0, 30.0, 10.0 ] );
var DU = new Float64Array( [ 8.0, 8.0 ] );
var DU2 = new Float64Array( [ 0.0 ] );
var IPIV = new Int32Array( [ 0, 0, 0 ] );
/*
A = [
[ 20.0, 8.0, 0.0 ],
[ 6.0, 30.0, 8.0 ],
[ 0.0, 6.0, 10.0 ]
]
*/
dgttrf( 3, DL, D, DU, DU2, IPIV );
// DL => <Float64Array>[ 0.3, ~0.22 ]
// D => <Float64Array>[ 20.0, 27.6, ~8.26 ]
// DU => <Float64Array>[ 8.0, 8.0 ]
// DU2 => <Float64Array>[ 0.0 ]
// IPIV => <Int32Array>[ 0, 1, 2 ]The function has the following parameters:
- N: number of rows/columns in
A. - DL: the first sub diagonal of
Aas aFloat64Array. Should haveN-1indexed elements.DLis overwritten by the multipliers that define the matrixLfrom theLUfactorization ofA. - D: the diagonal of
Aas aFloat64Array. Should haveNindexed elements.Dis overwritten by the diagonal elements of the upper triangular matrixUfrom theLUfactorization ofA. - DU: the first super-diagonal of
Aas aFloat64Array. Should haveN-1indexed elements.DUis overwritten by the elements of the first super-diagonal ofU. - DU2: the second super-diagonal of
Uas aFloat64Array. Should haveN-2indexed elements.DU2is overwritten by the elements of the second super-diagonal ofUas aFloat64Array. - IPIV: vector of pivot indices as a
Int32Array. Should haveNindexed elements.
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
var Int32Array = require( '@stdlib/array-int32' );
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );
// Initial arrays...
var DL0 = new Float64Array( [ 0.0, 6.0, 6.0 ] );
var D0 = new Float64Array( [ 0.0, 20.0, 30.0, 10.0 ] );
var DU0 = new Float64Array( [ 0.0, 8.0, 8.0 ] );
var DU20 = new Float64Array( [ 0.0, 0.0 ] );
var IPIV0 = new Int32Array( [ 0, 0, 0, 0 ] );
/*
A = [
[ 20.0, 8.0, 0.0 ],
[ 6.0, 30.0, 8.0 ],
[ 0.0, 6.0, 10.0 ]
]
*/
// Create offset views...
var DL = new Float64Array( DL0.buffer, DL0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var D = new Float64Array( D0.buffer, D0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var DU = new Float64Array( DU0.buffer, DU0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var DU2 = new Float64Array( DU20.buffer, DU20.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var IPIV = new Int32Array( IPIV0.buffer, IPIV0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dgttrf( 3, DL, D, DU, DU2, IPIV );
// DL0 => <Float64Array>[ 0.0, 0.3, ~0.22 ]
// D0 => <Float64Array>[ 0.0, 20.0, 27.6, ~8.26 ]
// DU0 => <Float64Array>[ 0.0, 8.0, 8.0 ]
// DU20 => <Float64Array>[ 0.0, 0.0 ]
// IPIV0 => <Int32Array>[ 0, 0, 1, 2 ]dgttrf.ndarray( N, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi )
Computes an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and row interchanges and alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var Int32Array = require( '@stdlib/array-int32' );
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );
var DL = new Float64Array( [ 6.0, 6.0 ] );
var D = new Float64Array( [ 20.0, 30.0, 10.0 ] );
var DU = new Float64Array( [ 8.0, 8.0 ] );
var DU2 = new Float64Array( [ 0.0 ] );
var IPIV = new Int32Array( [ 0, 0, 0 ] );
/*
A = [
[ 20.0, 8.0, 0.0 ],
[ 6.0, 30.0, 8.0 ],
[ 0.0, 6.0, 10.0 ]
]
*/
dgttrf.ndarray( 3, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 );
// DL => <Float64Array>[ 0.3, ~0.22 ]
// D => <Float64Array>[ 20.0, 27.6, ~8.26 ]
// DU => <Float64Array>[ 8.0, 8.0 ]
// DU2 => <Float64Array>[ 0.0 ]
// IPIV => <Int32Array>[ 0, 1, 2 ]The function has the following additional parameters:
- sdl: stride length for
DL. - odl: starting index for
DL. - sd: stride length for
D. - od: starting index for
D. - sdu: stride length for
DU. - odu: starting index for
DU. - sdu2: stride length for
DU2. - odu2: starting index for
DU2. - si: stride length for
IPIV. - oi: starting index for
IPIV.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array-float64' );
var Int32Array = require( '@stdlib/array-int32' );
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );
var DL = new Float64Array( [ 0.0, 6.0, 6.0 ] );
var D = new Float64Array( [ 0.0, 20.0, 30.0, 10.0 ] );
var DU = new Float64Array( [ 0.0, 8.0, 8.0 ] );
var DU2 = new Float64Array( [ 0.0, 0.0 ] );
var IPIV = new Int32Array( [ 0, 0, 0, 0 ] );
/*
A = [
[ 20.0, 8.0, 0.0 ],
[ 6.0, 30.0, 8.0 ],
[ 0.0, 6.0, 10.0 ]
]
*/
dgttrf.ndarray( 3, DL, 1, 1, D, 1, 1, DU, 1, 1, DU2, 1, 1, IPIV, 1, 1 );
// DL => <Float64Array>[ 0.0, 0.3, ~0.22 ]
// D => <Float64Array>[ 0.0, 20.0, 27.6, ~8.26 ]
// DU => <Float64Array>[ 0.0, 8.0, 8.0 ]
// DU2 => <Float64Array>[ 0.0, 0.0 ]
// IPIV => <Int32Array>[ 0, 0, 1, 2 ]Notes
Both functions mutate the input arrays
DL,D,DU,DU2, andIPIV.Both functions return a status code indicating success or failure. The status code indicates the following conditions:
0: factorization was successful.>0:U(k, k)is exactly zero the factorization has been completed, but the factorUis exactly singular, and division by zero will occur if it is used to solve a system of equations wherekequals the status code value.
Examples
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var dgttrf = require( '@stdlib/lapack-base-dgttrf' );
var N = 9;
var DL = new Float64Array( [ 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0 ] );
var D = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var DU = new Float64Array( [ 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0 ] );
var DU2 = new Float64Array( N-2 );
var IPIV = new Int32Array( N );
/*
A = [
[ 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
[ 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0 ],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0 ],
]
*/
// Perform the `A = LU` factorization:
var info = dgttrf( N, DL, D, DU, DU2, IPIV );
console.log( DL );
console.log( D );
console.log( DU );
console.log( DU2 );
console.log( IPIV );
console.log( info );C APIs
Usage
TODOTODO
TODO.
TODOTODO
TODOExamples
TODONotice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
