@stdlib/lapack-base-dlarf1f
v0.1.1
Published
LAPACK routine to apply a real elementary reflector `H = I - tau * v * v^T` to a real M by N matrix `C`.
Downloads
205
Readme
dlarf1f
Apply a real elementary reflector
H = I - tau * v * v^Tto a real M by N matrixC.
A Householder transformation (or an elementary reflector) is a linear transformation that describes a reflection about a plane or a hyperplane containing the origin.
Installation
npm install @stdlib/lapack-base-dlarf1fUsage
var dlarf1f = require( '@stdlib/lapack-base-dlarf1f' );dlarf1f( order, side, M, N, V, strideV, tau, C, LDC, work )
Applies a real elementary reflector H = I - tau * v * v^T to a real M by N matrix C.
var Float64Array = require( '@stdlib/array-float64' );
var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V = new Float64Array( [ 0.5, 0.5, 0.5, 0.5 ] );
var work = new Float64Array( 3 );
var out = dlarf1f( 'row-major', 'left', 4, 3, V, 1, 1.0, C, 3, work );
// returns <Float64Array>[ -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ]The function has the following parameters:
- order: storage layout.
- side: specifies the side of multiplication with
C. - M: number of rows in
C. - N: number of columns in
C. - V: the vector
vas aFloat64Array. - strideV: stride length for
V. IfstrideVis negative, the elements ofVare accessed in reverse order. - tau: scalar constant.
- C: input matrix stored in linear memory as a
Float64Array. - LDC: stride of the first dimension of
C(a.k.a., leading dimension of the matrixC). - work: workspace
Float64Array.
When side is 'left',
workshould haveNindexed elements.Vshould have1 + (M-1) * abs(strideV)indexed elements.Cis overwritten byH * C.
When side is 'right',
workshould haveMindexed elements.Vshould have1 + (N-1) * abs(strideV)indexed elements.Cis overwritten byC * H.
The sign of the increment parameter strideV determines the order in which elements of V are accessed. For example, to access elements in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V = new Float64Array( [ 0.5, 0.4, 0.3, 0.2 ] );
var work = new Float64Array( 3 );
var out = dlarf1f( 'row-major', 'left', 4, 3, V, -1, 1.0, C, 3, work );
// returns <Float64Array>[ ~-3.80, -8.6, ~-13.4, ~0.56, 1.92, ~3.28, ~1.08, ~1.56, ~2.04, ~1.60, ~1.20, ~0.80 ]To perform strided access over V, provide an abs(strideV) value greater than one. For example, to access every other element in V,
var Float64Array = require( '@stdlib/array-float64' );
var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V = new Float64Array( [ 0.5, 999, 0.5, 999, 0.5, 999, 0.5 ] );
var work = new Float64Array( 3 );
var out = dlarf1f( 'row-major', 'left', 4, 3, V, 2, 1.0, C, 3, work );
// returns <Float64Array>[ -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var C0 = new Float64Array( [ 0.0, 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V0 = new Float64Array( [ 0.0, 0.5, 0.5, 0.5, 0.5 ] );
var work0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var C1 = new Float64Array( C0.buffer, C0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var V1 = new Float64Array( V0.buffer, V0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var work1 = new Float64Array( work0.buffer, work0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var our = dlarf1f( 'row-major', 'left', 4, 3, V1, 1, 1.0, C1, 3, work1 );
// C0 => <Float64Array>[ 0.0, -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ]dlarf1f.ndarray( side, M, N, V, sv, ov, tau, C, sc1, sc2, oc, work, sw, ow )
Applies a real elementary reflector H = I - tau * v * v^T to a real M by N matrix C using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V = new Float64Array( [ 0.5, 0.5, 0.5, 0.5 ] );
var work = new Float64Array( 3 );
var out = dlarf1f.ndarray( 'left', 4, 3, V, 1, 0, 1.0, C, 3, 1, 0, work, 1, 0 );
// returns <Float64Array>[ -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ]The function has the following additional parameters:
- side: specifies the side of multiplication with
C. - M: number of rows in
C. - N: number of columns in
C. - V: the vector
vas aFloat64Array. - sv: stride length for
V. - ov: starting index for
V. - tau: scalar constant.
- C: input matrix as a
Float64Array. - sc1: stride of the first dimension of
C. - sc2: stride of the second dimension of
C. - oc: starting index for
C. - work: workspace array as a
Float64Array. - sw: stride length for
work. - ow: starting index for
work.
When side is 'left',
workshould haveNindexed elements.Vshould have1 + (M-1) * abs(sv)indexed elements.Cis overwritten byH * C.
When side is 'right',
workshould haveMindexed elements.Vshould have1 + (N-1) * abs(sv)indexed elements.Cis overwritten byC * H.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array-float64' );
var C = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
var V = new Float64Array( [ 0.0, 0.0, 0.5, 0.5, 0.5, 0.5 ] );
var work = new Float64Array( [ 0.0, 0.0, 0.0, 0.0 ] );
var out = dlarf1f.ndarray( 'left', 4, 3, V, 1, 2, 1.0, C, 3, 1, 4, work, 1, 0 );
// C => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, -4.5, -10.5, -16.5, -0.75, -1.75, -2.75, 0.25, -0.75, -1.75, 1.25, 0.25, -0.75 ]Notes
Examples
var Float64Array = require( '@stdlib/array-float64' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var shape2strides = require( '@stdlib/ndarray-base-shape2strides' );
var dlarf1f = require( '@stdlib/lapack-base-dlarf1f' );
// Specify matrix meta data:
var shape = [ 4, 3 ];
var order = 'row-major';
var strides = shape2strides( shape, order );
// Create a matrix stored in linear memory:
var C = new Float64Array( [ 1.0, 5.0, 9.0, 2.0, 6.0, 10.0, 3.0, 7.0, 11.0, 4.0, 8.0, 12.0 ] );
console.log( ndarray2array( C, shape, strides, 0, order ) );
// Define the vector `v` and a workspace array:
var V = new Float64Array( [ 0.5, 0.5, 0.5, 0.5 ] );
var work = new Float64Array( 3 );
// Apply the elementary reflector:
dlarf1f( order, 'left', shape[ 0 ], shape[ 1 ], V, 1, 1.0, C, strides[ 0 ], work );
console.log( ndarray2array( C, shape, strides, 0, order ) );C APIs
Usage
TODOTODO
TODO.
TODOTODO
TODOExamples
TODONotice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
