@stdlib/lapack-base-sge-trans
v0.1.1
Published
Convert a matrix from row-major layout to column-major layout or vice versa.
Downloads
200
Readme
sgetrans
Convert a matrix from row-major layout to column-major layout or vice versa.
Installation
npm install @stdlib/lapack-base-sge-transUsage
var sgetrans = require( '@stdlib/lapack-base-sge-trans' );sgetrans( order, M, N, A, LDA, out, LDO )
Converts a matrix from row-major layout to column-major layout or vice versa.
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var out = new Float32Array( 6 );
out = sgetrans( 'row-major', 2, 3, A, 3, out, 2 );
// returns <Float32Array>[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ]The function has the following parameters:
- order: storage layout.
- M: number of rows in
A. - N: number of columns in
A. - A: input
Float32Array. - LDA: stride of the first dimension of
A(a.k.a., leading dimension of the matrixA). - out: output
Float32Array. - LDO: stride of the first dimension of
out(a.k.a., leading dimension of the matrixout).
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var A0 = new Float32Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
var out0 = new Float32Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
// Create offset views...
var A1 = new Float32Array( A0.buffer, A0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var out1 = new Float32Array( out0.buffer, out0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
sgetrans( 'row-major', 2, 2, A1, 2, out1, 2 );
// out0 => <Float32Array>[ 0.0, 1.0, 3.0, 2.0, 4.0 ]sgetrans.ndarray( M, N, A, sa1, sa2, oa, out, so1, so2, oo )
Converts a matrix from row-major layout to column-major layout or vice versa using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var out = new Float32Array( 6 );
out = sgetrans.ndarray( 2, 3, A, 3, 1, 0, out, 2, 1, 0 );
// returns <Float32Array>[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ]The function has the following parameters:
- M: number of rows in
A. - N: number of columns in
A. - A: input
Float32Array. - sa1: stride of the first dimension of
A. - sa2: stride of the second dimension of
A. - oa: starting index for
A. - out: output
Float32Array. - so1: stride of the first dimension of
out. - so2: stride of the second dimension of
out. - oo: starting index for
out.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
var out = new Float32Array( [ 0.0, 0.0, 11.0, 312.0, 53.0, 412.0 ] );
sgetrans.ndarray( 2, 2, A, 2, 1, 1, out, 2, 1, 2 );
// out => <Float32Array>[ 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ]Notes
Examples
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var shape2strides = require( '@stdlib/ndarray-base-shape2strides' );
var numel = require( '@stdlib/ndarray-base-numel' );
var Float32Array = require( '@stdlib/array-float32' );
var sgetrans = require( '@stdlib/lapack-base-sge-trans' );
var shapeA = [ 2, 3 ];
var shapeOut = [ 3, 2 ];
// Row-major layout...
var order = 'row-major';
var stridesA = shape2strides( shapeA, order );
var stridesOut = shape2strides( shapeOut, order );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, order ) );
var out = new Float32Array( numel( shapeA ) );
out = sgetrans( order, shapeA[0], shapeA[1], A, stridesA[0], out, stridesOut[0] );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, order ) );
// Column-major layout...
order = 'column-major';
stridesA = shape2strides( shapeA, order );
stridesOut = shape2strides( shapeOut, order );
A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, order ) );
out = new Float32Array( numel( shapeA ) );
out = sgetrans( order, shapeA[0], shapeA[1], A, stridesA[1], out, stridesOut[1] );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, order ) );
// Input and output arrays have different layouts...
stridesA = shape2strides( shapeA, 'row-major' );
stridesOut = shape2strides( shapeOut, 'column-major' );
A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, 'row-major' ) );
out = new Float32Array( numel( shapeA ) );
out = sgetrans.ndarray( shapeA[0], shapeA[1], A, stridesA[0], stridesA[1], 0, out, stridesOut[0], stridesOut[1], 0 );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, 'column-major' ) );
// Input and output arrays have different layouts...
stridesA = shape2strides( shapeA, 'column-major' );
stridesOut = shape2strides( shapeOut, 'row-major' );
A = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, 'column-major' ) );
out = new Float32Array( numel( shapeA ) );
out = sgetrans.ndarray( shapeA[0], shapeA[1], A, stridesA[0], stridesA[1], 0, out, stridesOut[0], stridesOut[1], 0 );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, 'row-major' ) );C APIs
Usage
TODOTODO
TODO.
TODOTODO
TODOExamples
TODONotice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
