npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@stdlib/lapack-base-zrot

v0.1.1

Published

LAPACK auxiliary routine to apply a plane rotation with real cosine and complex sine.

Readme

zrot

NPM version Build Status Coverage Status

Apply a plane rotation with real cosine and complex sine to a pair of double-precision complex floating-point vectors.

Installation

npm install @stdlib/lapack-base-zrot

Usage

var zrot = require( '@stdlib/lapack-base-zrot' );

zrot( N, zx, strideX, zy, strideY, c, s )

Applies a plane rotation with real cosine and complex sine.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var zy = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var s = new Complex128( 0.0, 0.75 );

zrot( zx.length, zx, 1, zy, 1, 1.25, s );

var z = zy.get( 0 );
// returns <Complex128>[ ~-1.5, ~0.75 ]

z = zx.get( 0 );
// returns <Complex128>[ ~1.25, ~2.5 ]

The function has the following parameters:

  • N: number of indexed elements.
  • zx: first input Complex128Array.
  • strideX: index increment for zx.
  • zy: second input Complex128Array.
  • strideY: index increment for zy.

The N and stride parameters determine how values from zx and zy are accessed at runtime. For example, to apply a plane rotation to every other element,

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var zy = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var s = new Complex128( 0.0, 0.75 );

zrot( 2, zx, 2, zy, 2, 1.25, s );

var z = zy.get( 0 );
// returns <Complex128>[ ~-1.5, ~0.75 ]

z = zx.get( 0 );
// returns <Complex128>[ ~1.25, ~2.5 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

// Initial arrays...
var zx0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var zy0 = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var zx1 = new Complex128Array( zx0.buffer, zx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var zy1 = new Complex128Array( zy0.buffer, zy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

var s = new Complex128( 0.0, 0.75 );

zrot( 2, zx1, -2, zy1, 1, 1.25, s );

var z = zy0.get( 2 );
// returns <Complex128>[ ~-6.0, ~5.25 ]

z = zx0.get( 3 );
// returns <Complex128>[ ~8.75, ~10.0 ]

zrot.ndarray( N, zx, strideX, offsetX, zy, strideY, offsetY, c, s )

Applies a plane rotation with real cosine and complex sine using alternative indexing semantics.

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var zy = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var s = new Complex128( 0.0, 0.75 );

zrot.ndarray( zx.length, zx, 1, 0, zy, 1, 0, 1.25, s );

var z = zy.get( 0 );
// returns <Complex128>[ ~-1.5, ~0.75 ]

z = zx.get( 0 );
// returns <Complex128>[ ~1.25, ~2.5 ]

The function has the following additional parameters:

  • offsetX: starting index for zx.
  • offsetY: starting index for zy.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,

var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );

var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var zy = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
var s = new Complex128( 0.0, 0.75 );

zrot.ndarray( 2, zx, 2, 1, zy, 2, 1, 1.25, s );

var z = zy.get( 3 );
// returns <Complex128>[ ~-6.0, ~5.25 ]

z = zx.get( 1 );
// returns <Complex128>[ ~3.75, ~5.0 ]

Notes

  • If N <= 0, both functions leave zx and zy unchanged.
  • zrot() corresponds to the LAPACK routine zrot.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var zcopy = require( '@stdlib/blas-base-zcopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var zrot = require( '@stdlib/lapack-base-zrot' );

function rand() {
    return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

// Generate random input arrays:
var zx = filledarrayBy( 10, 'complex128', rand );
var zxc = zcopy( zx.length, zx, 1, zeros( zx.length, 'complex128' ), 1 );

var zy = filledarrayBy( 10, 'complex128', rand );
var zyc = zcopy( zy.length, zy, 1, zeros( zy.length, 'complex128' ), 1 );

var s = new Complex128( 0.0, 0.75 );

// Apply a plane rotation:
zrot( zx.length, zx, 1, zy, 1, 1.25, s );

// Print the results:
logEach( '(%s,%s) => (%s,%s)', zxc, zyc, zx, zy );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2026. The Stdlib Authors.