npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@stdlib/math-base-tools-evalrational-compile-c

v0.1.1

Published

Compile a C function for evaluating a rational function.

Downloads

134

Readme

evalrational

NPM version Build Status Coverage Status

Compile a C function for evaluating a rational function.

Installation

npm install @stdlib/math-base-tools-evalrational-compile-c

Usage

var compile = require( '@stdlib/math-base-tools-evalrational-compile-c' );

compile( P, Q )

Compiles a C function for evaluating a rational function having coefficients P and Q.

var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];

var str = compile( P, Q );
// returns <string>

The function supports the following options:

  • dtype: input argument floating-point data type (e.g., double or float). Default: 'double'.
  • name: function name. Default: 'evalpoly'.

In the example above, the output string would correspond to the following function:

/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* -   Coefficients should be sorted in ascending degree.
* -   The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x    value at which to evaluate the rational function
* @returns    evaluated rational function
*/
static double evalrational( const double x ) {
    double ax;
    double ix;
    double s1;
    double s2;
    if ( x == 0.0 ) {
        return -3.0;
    }
    if ( x < 0.0 ) {
        ax = -x;
    } else {
        ax = x;
    }
    if ( ax <= 1.0 ) {
        s1 = 3.0 + (x * (2.0 + (x * 1.0)));
        s2 = -1.0 + (x * (-2.0 + (x * -3.0)));
    } else {
        ix = 1.0 / x;
        s1 = 1.0 + (ix * (2.0 + (ix * 3.0)));
        s2 = -3.0 + (ix * (-2.0 + (ix * -1.0)));
    }
    return s1 / s2;
}

To generate a function having a custom name and supporting single-precision floating-point numbers, provide the corresponding options.

var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];

var opts = {
    'dtype': 'float',
    'name': 'rational123'
};
var str = compile( P, Q, opts );
// returns <string>

For the previous example, the output string would correspond to the following function:

/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* -   Coefficients should be sorted in ascending degree.
* -   The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x    value at which to evaluate the rational function
* @returns    evaluated rational function
*/
static float rational123( const float x ) {
    float ax;
    float ix;
    float s1;
    float s2;
    if ( x == 0.0f ) {
        return -3.0f;
    }
    if ( x < 0.0f ) {
        ax = -x;
    } else {
        ax = x;
    }
    if ( ax <= 1.0f ) {
        s1 = 3.0f + (x * (2.0f + (x * 1.0f)));
        s2 = -1.0f + (x * (-2.0f + (x * -3.0f)));
    } else {
        ix = 1.0f / x;
        s1 = 1.0f + (ix * (2.0f + (ix * 3.0f)));
        s2 = -3.0f + (ix * (-2.0f + (ix * -1.0f)));
    }
    return s1 / s2;
}

Notes

  • The coefficients should be ordered in ascending degree, thus matching summation notation.
  • The function is intended for non-browser environments for the purpose of generating module files.

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var compile = require( '@stdlib/math-base-tools-evalrational-compile-c' );

var sign;
var str;
var P;
var Q;
var i;

// Create two arrays of random coefficients...
P = new Float64Array( 10 );
Q = new Float64Array( 10 );
for ( i = 0; i < P.length; i++ ) {
    if ( randu() < 0.5 ) {
        sign = -1.0;
    } else {
        sign = 1.0;
    }
    P[ i ] = sign * round( randu()*100.0 );
    Q[ i ] = sign * round( randu()*100.0 );
}

// Compile a function for evaluating a rational function:
str = compile( P, Q );
console.log( str );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.