npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@stdlib/ndarray-base-unary-reduce-strided1d-dispatch

v0.0.1

Published

Constructor for performing a reduction on an input ndarray.

Readme

UnaryStrided1dDispatch

NPM version Build Status Coverage Status

Constructor for performing a reduction on an input ndarray.

Installation

npm install @stdlib/ndarray-base-unary-reduce-strided1d-dispatch

Usage

var UnaryStrided1dDispatch = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch' );

UnaryStrided1dDispatch( table, idtypes, odtypes, policies )

Constructor for performing a reduction on an input ndarray.

var base = require( '@stdlib/stats-base-ndarray-max' );

var table = {
    'default': base
};

var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
    'output': 'same',
    'casting': 'none'
};

var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies );

The constructor has the following parameters:

  • table: strided reduction function dispatch table. Must have the following properties:

    • default: default strided reduction function which should be invoked when provided ndarrays have data types which do not have a corresponding specialized implementation.

    A dispatch table may have the following additional properties:

    • types: one-dimensional list of ndarray data types describing specialized input ndarray argument signatures. Only the input ndarray argument data types should be specified. Output ndarray and additional input ndarray argument data types should be omitted and are not considered during dispatch. The length of types must equal the number of strided functions specified by fcns (i.e., for every input ndarray data type, there must be a corresponding strided reduction function in fcns).
    • fcns: list of strided reduction functions which are specific to specialized input ndarray argument signatures.
  • idtypes: list containing lists of supported input data types for each input ndarray argument.

  • odtypes: list of supported output data types.

  • policies: dispatch policies. Must have the following properties:

    • output: output data type policy.
    • casting: input ndarray casting policy.

UnaryStrided1dDispatch.prototype.apply( x[, ...args][, options] )

Performs a reduction on a provided input ndarray.

var ndarray = require( '@stdlib/ndarray-base-ctor' );
var base = require( '@stdlib/stats-base-ndarray-max' );

var table = {
    'default': base
};

var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
    'output': 'same',
    'casting': 'none'
};

var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies );

var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );

var y = unary.apply( x );
// returns <ndarray>

var v = y.get();
// returns 2.0

The method has the following parameters:

  • x: input ndarray.
  • ...args: additional input ndarray arguments (optional).
  • options: function options (optional).

The method accepts the following options:

  • dims: list of dimensions over which to perform a reduction.
  • dtype: output ndarray data type. Setting this option overrides the output data type policy.
  • keepdims: boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions. Default: false.

By default, the method returns an ndarray having a data type determined by the output data type policy. To override the default behavior, set the dtype option.

var ndarray = require( '@stdlib/ndarray-base-ctor' );
var base = require( '@stdlib/stats-base-ndarray-max' );
var getDType = require( '@stdlib/ndarray-dtype' );

var table = {
    'default': base
};

var dtypes = [ 'float64', 'float32', 'generic' ];
var policies = {
    'output': 'same',
    'casting': 'none'
};

var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies );

var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );

var y = unary.apply( x, {
    'dtype': 'float64'
});
// returns <ndarray>

var dt = getDType( y );
// returns 'float64'

UnaryStrided1dDispatch.prototype.assign( x[, ...args], out[, options] )

Performs a reduction on a provided input ndarray and assigns results to a provided output ndarray.

var base = require( '@stdlib/stats-base-ndarray-max' );
var dtypes = require( '@stdlib/ndarray-dtypes' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );

var idt = dtypes( 'real_and_generic' );
var odt = idt;
var policies = {
    'output': 'same',
    'casting': 'none'
};

var table = {
    'default': base
};
var unary = new UnaryStrided1dDispatch( table, [ idt ], odt, policies );

var xbuf = [ -1.0, 2.0, -3.0 ];
var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );

var ybuf = [ 0.0 ];
var y = new ndarray( 'generic', ybuf, [], [ 0 ], 0, 'row-major' );

var out = unary.assign( x, y );
// returns <ndarray>

var v = out.get();
// returns 2.0

var bool = ( out === y );
// returns true

The method has the following parameters:

  • x: input ndarray.
  • args: additional input ndarray arguments (optional).
  • out: output ndarray.
  • options: function options (optional).

The method accepts the following options:

  • dims: list of dimensions over which to perform a reduction.

Notes

  • A strided reduction function should have the following signature:

    f( arrays )

    where

    • arrays: array containing an input ndarray, followed by any additional ndarray arguments.
  • The output data type policy only applies to the apply method. For the assign method, the output ndarray is allowed to have any supported output data type.

Examples

var dmax = require( '@stdlib/stats-base-ndarray-dmax' );
var smax = require( '@stdlib/stats-base-ndarray-smax' );
var base = require( '@stdlib/stats-base-ndarray-max' );
var uniform = require( '@stdlib/random-array-uniform' );
var dtypes = require( '@stdlib/ndarray-dtypes' );
var dtype = require( '@stdlib/ndarray-dtype' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var UnaryStrided1dDispatch = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch' );

// Define the supported input and output data types:
var idt = dtypes( 'real_and_generic' );
var odt = dtypes( 'real_and_generic' );

// Define dispatch policies:
var policies = {
    'output': 'same',
    'casting': 'none'
};

// Define a dispatch table:
var table = {
    'types': [
        'float64', // input
        'float32'  // input
    ],
    'fcns': [
        dmax,
        smax
    ],
    'default': base
};

// Create an interface for performing a reduction:
var max = new UnaryStrided1dDispatch( table, [ idt ], odt, policies );

// Generate an array of random numbers:
var xbuf = uniform( 100, -1.0, 1.0, {
    'dtype': 'generic'
});

// Wrap in an ndarray:
var x = new ndarray( 'generic', xbuf, [ 10, 10 ], [ 10, 1 ], 0, 'row-major' );

// Perform a reduction:
var y = max.apply( x, {
    'dims': [ 0 ]
});

// Resolve the output array data type:
var dt = dtype( y );
console.log( dt );

// Print the results:
console.log( ndarray2array( y ) );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2026. The Stdlib Authors.