npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@stdlib/ndarray-base-unary-reduce-subarray-by

v0.1.1

Published

Perform a reduction over a list of specified dimensions in an input ndarray according to a callback function and assign results to a provided output ndarray.

Downloads

286

Readme

unaryReduceSubarrayBy

NPM version Build Status Coverage Status

Perform a reduction over a list of specified dimensions in an input ndarray according to a callback function and assign results to a provided output ndarray.

Installation

npm install @stdlib/ndarray-base-unary-reduce-subarray-by

Usage

var unaryReduceSubarrayBy = require( '@stdlib/ndarray-base-unary-reduce-subarray-by' );

unaryReduceSubarrayBy( fcn, arrays, dims[, options], clbk[, thisArg] )

Performs a reduction over a list of specified dimensions in an input ndarray according to a callback function and assigns results to a provided output ndarray.

var Float64Array = require( '@stdlib/array-float64' );
var filled = require( '@stdlib/array-base-filled' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var everyBy = require( '@stdlib/ndarray-base-every-by' );

function clbk( value ) {
    return value > 0.0;
}

// Create data buffers:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var ybuf = filled( false, 3 );

// Define the array shapes:
var xsh = [ 1, 3, 2, 2 ];
var ysh = [ 1, 3 ];

// Define the array strides:
var sx = [ 12, 4, 2, 1 ];
var sy = [ 3, 1 ];

// Define the index offsets:
var ox = 0;
var oy = 0;

// Create an input ndarray-like object:
var x = {
    'dtype': 'float64',
    'data': xbuf,
    'shape': xsh,
    'strides': sx,
    'offset': ox,
    'order': 'row-major'
};

// Create an output ndarray-like object:
var y = {
    'dtype': 'generic',
    'data': ybuf,
    'shape': ysh,
    'strides': sy,
    'offset': oy,
    'order': 'row-major'
};

// Perform a reduction:
unaryReduceSubarrayBy( everyBy, [ x, y ], [ 2, 3 ], clbk );

var arr = ndarray2array( y.data, y.shape, y.strides, y.offset, y.order );
// returns [ [ true, false, true ] ]

The function accepts the following arguments:

  • fcn: function which will be applied to a subarray and should reduce the subarray to a single scalar value.
  • arrays: array-like object containing one input ndarray and one output ndarray, followed by any additional ndarray arguments.
  • dims: list of dimensions over which to perform a reduction.
  • options: function options which are passed through to fcn (optional).
  • clbk: callback function.
  • thisArg: callback execution context (optional).

Each provided ndarray should be an object with the following properties:

  • dtype: data type.
  • data: data buffer.
  • shape: dimensions.
  • strides: stride lengths.
  • offset: index offset.
  • order: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).

The invoked callback function is provided the following arguments:

  • value: input array element.
  • indices: current array element indices.
  • arr: the input ndarray.

To set the callback execution context, provide a thisArg.

var Float64Array = require( '@stdlib/array-float64' );
var filled = require( '@stdlib/array-base-filled' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var everyBy = require( '@stdlib/ndarray-base-every-by' );

function clbk( value ) {
    this.count += 1;
    return value > 0.0;
}

// Create data buffers:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var ybuf = filled( false, 6 );

// Define the array shapes:
var xsh = [ 3, 2, 2 ];
var ysh = [ 3, 2 ];

// Define the array strides:
var sx = [ 4, 2, 1 ];
var sy = [ 2, 1 ];

// Define the index offsets:
var ox = 0;
var oy = 0;

// Create an input ndarray-like object:
var x = {
    'dtype': 'float64',
    'data': xbuf,
    'shape': xsh,
    'strides': sx,
    'offset': ox,
    'order': 'row-major'
};

// Create an output ndarray-like object:
var y = {
    'dtype': 'generic',
    'data': ybuf,
    'shape': ysh,
    'strides': sy,
    'offset': oy,
    'order': 'row-major'
};

var ctx = {
    'count': 0
};

// Perform a reduction:
unaryReduceSubarrayBy( everyBy, [ x, y ], [ 1 ], clbk, ctx );

var arr = ndarray2array( y.data, y.shape, y.strides, y.offset, y.order );
// returns [ [ true, true ], [ true, false ], [ true, true ] ]

var count = ctx.count;
// returns 11

TODO: document factory method

Notes

  • The output ndarray and any additional ndarray arguments are expected to have the same dimensions as the non-reduced dimensions of the input ndarray. When calling the reduction function, any additional ndarray arguments are provided as zero-dimensional ndarray-like objects.

  • The reduction function is expected to have the following signature:

    fcn( arrays[, options], wrappedCallback )

    where

    • arrays: array containing a subarray of the input ndarray and any additional ndarray arguments as zero-dimensional ndarrays.
    • options: function options (optional).
    • wrappedCallback: callback function. This function is a wrapper around a provided clbk argument.
  • For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before performing a reduction in order to achieve better performance.

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var filled = require( '@stdlib/array-base-filled' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var everyBy = require( '@stdlib/ndarray-base-every-by' );
var unaryReduceSubarrayBy = require( '@stdlib/ndarray-base-unary-reduce-subarray-by' );

function clbk( value ) {
    return value > -3;
}

var x = {
    'dtype': 'generic',
    'data': discreteUniform( 40, -5, 5, {
        'dtype': 'generic'
    }),
    'shape': [ 2, 5, 2, 2 ],
    'strides': [ 1, 2, 10, 20 ],
    'offset': 0,
    'order': 'column-major'
};
var y = {
    'dtype': 'generic',
    'data': filled( false, 10 ),
    'shape': [ 2, 5 ],
    'strides': [ 1, 2 ],
    'offset': 0,
    'order': 'column-major'
};

unaryReduceSubarrayBy( everyBy, [ x, y ], [ 2, 3 ], clbk );

console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );
console.log( ndarray2array( y.data, y.shape, y.strides, y.offset, y.order ) );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2026. The Stdlib Authors.