@stdlib/stats-base-dists-arcsine-logpdf
v0.3.0
Published
Arcsine distribution logarithm of probability density function (PDF).
Readme
Logarithm of Probability Density Function
Arcsine distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a arcsine random variable is
where a is the minimum support and b is the maximum support of the distribution. The parameters must satisfy a < b.
Installation
npm install @stdlib/stats-base-dists-arcsine-logpdfUsage
var logpdf = require( '@stdlib/stats-base-dists-arcsine-logpdf' );logpdf( x, a, b )
Evaluates the logarithm of the probability density function (PDF) for an arcsine distribution with parameters a (minimum support) and b (maximum support).
var y = logpdf( 2.0, 0.0, 4.0 );
// returns ~-1.838
y = logpdf( 5.0, 0.0, 4.0 );
// returns -Infinity
y = logpdf( 0.25, 0.0, 1.0 );
// returns ~-0.308If provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaNIf provided a >= b, the function returns NaN.
var y = logpdf( 2.5, 3.0, 2.0 );
// returns NaN
y = logpdf( 2.5, 3.0, 3.0 );
// returns NaNlogpdf.factory( a, b )
Returns a function for evaluating the logarithm of the PDF for an arcsine distribution with parameters a (minimum support) and b (maximum support).
var mylogPDF = logpdf.factory( 6.0, 7.0 );
var y = mylogPDF( 7.0 );
// returns Infinity
y = mylogPDF( 5.0 );
// returns -InfinityNotes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var logpdf = require( '@stdlib/stats-base-dists-arcsine-logpdf' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 25, -10.0, 10.0, opts );
var a = uniform( x.length, -20.0, 0.0, opts );
var b = uniform( x.length, 0.0, 40.0, opts );
logEachMap( 'x: %0.4f, a: %0.4f, b: %0.4f, ln(f(x;a,b)): %0.4f', x, a, b, logpdf );C APIs
Usage
#include "stdlib/stats/base/dists/arcsine/logpdf.h"stdlib_base_dists_arcsine_logpdf( x, a, b )
Evaluates the logarithm of the probability density function (PDF) for an arcsine distribution.
double out = stdlib_base_dists_arcsine_logpdf( 2.0, 0.0, 4.0 );
// returns ~-1.838The function accepts the following arguments:
- x:
[in] doubleinput value. - a:
[in] doubleminimum support. - b:
[in] doublemaximum support.
double stdlib_base_dists_arcsine_logpdf( const double x, const double a, const double b );Examples
#include "stdlib/stats/base/dists/arcsine/logpdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double x;
double a;
double b;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( -10.0, 10.0 );
a = random_uniform( -20.0, 0.0 );
b = random_uniform( a, a+40.0 );
y = stdlib_base_dists_arcsine_logpdf( x, a, b );
printf( "x: %lf, a: %lf, b: %lf, ln(f(x;a,b)): %lf\n", x, a, b, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
