@stdlib/stats-base-dists-arcsine-quantile
v0.3.0
Published
Arcsine distribution quantile function.
Readme
Quantile Function
Arcsine distribution quantile function.
The quantile function for an arcsine random variable is
for 0 <= p <= 1, where a is the minimum support and b is the maximum support. The parameters must satisfy a < b.
Installation
npm install @stdlib/stats-base-dists-arcsine-quantileUsage
var quantile = require( '@stdlib/stats-base-dists-arcsine-quantile' );quantile( p, a, b )
Evaluates the quantile function for an arcsine distribution with parameters a (minimum support) and b (maximum support).
var y = quantile( 0.8, 0.0, 1.0 );
// returns ~0.905
y = quantile( 0.5, 0.0, 10.0 );
// returns ~5.0If provided a probability p outside the interval [0,1], the function returns NaN.
var y = quantile( 1.9, 0.0, 1.0 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0 );
// returns NaNIf provided NaN as any argument, the function returns NaN.
var y = quantile( NaN, 0.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 0.0, NaN );
// returns NaNIf provided a >= b, the function returns NaN.
var y = quantile( 0.4, 2.0, 1.0 );
// returns NaNquantile.factory( a, b )
Returns a function for evaluating the quantile function of an arcsine distribution with parameters a (minimum support) and b (maximum support).
var myquantile = quantile.factory( 0.0, 4.0 );
var y = myquantile( 0.8 );
// returns ~3.618Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var quantile = require( '@stdlib/stats-base-dists-arcsine-quantile' );
var opts = {
'dtype': 'float64'
};
var p = uniform( 25, 0.0, 1.0, opts );
var a = uniform( p.length, 0.0, 10.0, opts );
var b = uniform( a.length, 10.0, 50.0, opts );
logEachMap( 'p: %0.4f, a: %0.4f, b: %0.4f, Q(p;a,b): %0.4f', p, a, b, quantile );C APIs
Usage
#include "stdlib/stats/base/dists/arcsine/quantile.h"stdlib_base_dists_arcsine_quantile( p, a, b )
Evaluates the quantile function for an arcsine distribution.
double out = quantile( 0.8, 0.0, 1.0 );
// returns ~0.905The function accepts the following arguments:
- p:
[in] doubleinput value. - a:
[in] doubleminimum support. - b:
[in] doublemaximum support.
double stdlib_base_dists_arcsine_quantile( const double p, const double a, const double b );Examples
#include "stdlib/stats/base/dists/arcsine/quantile.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main(void){
double a;
double b;
double p;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
p = random_uniform( 0.0, 1.0 );
a = random_uniform( -20.0, 0.0);
b = random_uniform( a, a+40.0 );
y = stdlib_base_dists_arcsine_quantile( p, a, b );
printf( "p: %lf, a: %lf, b: %lf, Q(p;a,b): %lf\n", p, a, b, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
