@stdlib/stats-base-dists-beta-logcdf
v0.2.2
Published
Beta distribution logarithm of cumulative distribution function (CDF).
Readme
Logarithm of Cumulative Distribution Function
Beta distribution logarithm of cumulative distribution function.
The cumulative distribution function for a beta random variable is
where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter. In the definition, Beta( x; a, b ) denotes the lower incomplete beta function and Beta( a, b ) the beta function.
Installation
npm install @stdlib/stats-base-dists-beta-logcdfUsage
var logcdf = require( '@stdlib/stats-base-dists-beta-logcdf' );logcdf( x, alpha, beta )
Evaluates the natural logarithm of the cumulative distribution function (CDF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var y = logcdf( 0.5, 1.0, 1.0 );
// returns ~-0.693
y = logcdf( 0.5, 2.0, 4.0 );
// returns ~-0.208
y = logcdf( 0.2, 2.0, 2.0 );
// returns ~-2.263
y = logcdf( 0.8, 4.0, 4.0 );
// returns ~-0.034
y = logcdf( -0.5, 4.0, 2.0 );
// returns -Infinity
y = logcdf( -Infinity, 4.0, 2.0 );
// returns -Infinity
y = logcdf( 1.5, 4.0, 2.0 );
// returns 0.0
y = logcdf( +Infinity, 4.0, 2.0 );
// returns 0.0If provided NaN as any argument, the function returns NaN.
var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 1.0, NaN );
// returns NaNIf provided alpha <= 0, the function returns NaN.
var y = logcdf( 2.0, -1.0, 0.5 );
// returns NaN
y = logcdf( 2.0, 0.0, 0.5 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = logcdf( 2.0, 0.5, -1.0 );
// returns NaN
y = logcdf( 2.0, 0.5, 0.0 );
// returns NaNlogcdf.factory( alpha, beta )
Returns a function for evaluating the natural logarithm of the cumulative distribution function for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var mylogcdf = logcdf.factory( 0.5, 0.5 );
var y = mylogcdf( 0.8 );
// returns ~-0.35
y = mylogcdf( 0.3 );
// returns ~-0.997Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logcdf = require( '@stdlib/stats-base-dists-beta-logcdf' );
var alpha;
var beta;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu();
alpha = ( randu()*5.0 ) + EPS;
beta = ( randu()*5.0 ) + EPS;
y = logcdf( x, alpha, beta );
console.log( 'x: %d, α: %d, β: %d, ln(F(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.
