@stdlib/stats-base-dists-beta-mgf
v0.3.1
Published
Beta distribution moment-generating function (MGF).
Readme
Moment-Generating Function
Beta distribution moment-generating function (MGF).
The moment-generating function for a beta random variable is
where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter.
Installation
npm install @stdlib/stats-base-dists-beta-mgfUsage
var mgf = require( '@stdlib/stats-base-dists-beta-mgf' );mgf( t, alpha, beta )
Evaluates the moment-generating function (MGF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var y = mgf( 0.5, 1.0, 1.0 );
// returns ~1.297
y = mgf( 0.5, 2.0, 4.0 );
// returns ~1.186
y = mgf( 3.0, 2.0, 2.0 );
// returns ~5.575
y = mgf( -0.8, 4.0, 4.0 );
// returns ~0.676If provided NaN as any argument, the function returns NaN.
var y = mgf( NaN, 1.0, 1.0 );
// returns NaN
y = mgf( 0.0, NaN, 1.0 );
// returns NaN
y = mgf( 0.0, 1.0, NaN );
// returns NaNIf provided alpha <= 0, the function returns NaN.
var y = mgf( 2.0, -1.0, 0.5 );
// returns NaN
y = mgf( 2.0, 0.0, 0.5 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = mgf( 2.0, 0.5, -1.0 );
// returns NaN
y = mgf( 2.0, 0.5, 0.0 );
// returns NaNmgf.factory( alpha, beta )
Returns a function for evaluating the moment-generating function for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var mymgf = mgf.factory( 0.5, 0.5 );
var y = mymgf( 0.8 );
// returns ~1.552
y = mymgf( 0.3 );
// returns ~1.168Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mgf = require( '@stdlib/stats-base-dists-beta-mgf' );
var opts = {
'dtype': 'float64'
};
var alpha = uniform( 10, EPS, 5.0, opts );
var beta = uniform( 10, EPS, 5.0, opts );
var t = uniform( 10, 0.0, 20.0, opts );
logEachMap( 't: %0.4f, α: %0.4f, β: %0.4f, M_X(t;α,β): %0.4f', t, alpha, beta, mgf );C APIs
Usage
#include "stdlib/stats/base/dists/beta/mgf.h"stdlib_base_dists_beta_mgf( t, alpha, beta )
Evaluates the moment-generating function (MGF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
double y = stdlib_base_dists_beta_mgf( 0.5, 1.0, 1.0 );
// returns ~1.297The function accepts the following arguments:
- t:
[in] doubleinput value. - alpha:
[in] doublefirst shape parameter. - beta:
[in] doublesecond shape parameter.
double stdlib_base_dists_beta_mgf( const double t, const double alpha, const double beta );Examples
#include "stdlib/stats/base/dists/beta/mgf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double alpha;
double beta;
double t;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
t = random_uniform( 0.0, 20.0 );
alpha = random_uniform( 1.0 + STDLIB_CONSTANT_FLOAT64_EPS, 100.0 );
beta = random_uniform( 1.0 + STDLIB_CONSTANT_FLOAT64_EPS, 100.0 );
y = stdlib_base_dists_beta_mgf( alpha, beta );
printf( "t: %lf, α: %lf, β: %lf, M_X(t;α,β): %lf\n", t, alpha, beta, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
