@stdlib/stats-base-dists-beta-pdf
v0.3.1
Published
Beta distribution probability density function (PDF).
Readme
Probability Density Function
Beta distribution probability density function (PDF).
The probability density function (PDF) for a beta random variable is
where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter.
Installation
npm install @stdlib/stats-base-dists-beta-pdfUsage
var pdf = require( '@stdlib/stats-base-dists-beta-pdf' );pdf( x, alpha, beta )
Evaluates the probability density function (PDF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var y = pdf( 0.5, 0.5, 1.0 );
// returns ~0.707
y = pdf( 0.1, 1.0, 1.0 );
// returns 1.0
y = pdf( 0.8, 4.0, 2.0 );
// returns ~2.048If provided a x outside the support [0,1], the function returns 0.
var y = pdf( -0.1, 1.0, 1.0 );
// returns 0.0
y = pdf( 1.1, 1.0, 1.0 );
// returns 0.0If provided NaN as any argument, the function returns NaN.
var y = pdf( NaN, 1.0, 1.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0 );
// returns NaN
y = pdf( 0.0, 1.0, NaN );
// returns NaNIf provided alpha <= 0, the function returns NaN.
var y = pdf( 0.5, 0.0, 1.0 );
// returns NaN
y = pdf( 0.5, -1.0, 1.0 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = pdf( 0.5, 1.0, 0.0 );
// returns NaN
y = pdf( 0.5, 1.0, -1.0 );
// returns NaNpdf.factory( alpha, beta )
Returns a function for evaluating the PDF for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var mypdf = pdf.factory( 0.5, 0.5 );
var y = mypdf( 0.8 );
// returns ~0.796
y = mypdf( 0.3 );
// returns ~0.695Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var EPS = require( '@stdlib/constants-float64-eps' );
var pdf = require( '@stdlib/stats-base-dists-beta-pdf' );
var opts = {
'dtype': 'float64'
};
var alpha = uniform( 10, EPS, 5.0, opts );
var beta = uniform( 10, EPS, 5.0, opts );
var x = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'x: %0.4f, α: %0.4f, β: %0.4f, f(x;α,β): %0.4f', x, alpha, beta, pdf );C APIs
Usage
#include "stdlib/stats/base/dists/beta/pdf.h"stdlib_base_dists_beta_pdf( x, alpha, beta )
Evaluates the probability density function (PDF) for a beta distribution with first shape parameter alpha and second shape parameter beta.
double y = stdlib_base_dists_beta_pdf( 0.5, 1.0, 1.0 );
// returns 1.0The function accepts the following arguments:
- x:
[in] doubleinput value. - alpha:
[in] doublefirst shape parameter. - beta:
[in] doublesecond shape parameter.
double stdlib_base_dists_beta_pdf( const double x, double alpha, const double beta );Examples
#include "stdlib/stats/base/dists/beta/pdf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double alpha;
double beta;
double x;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
x = random_uniform( 0.0, 1.0 );
alpha = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 );
beta = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 );
y = stdlib_base_dists_beta_pdf( x, alpha, beta );
printf( "x: %lf, α: %lf, β: %lf, f(x;α,β): %lf\n", x, alpha, beta, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
