@stdlib/stats-base-dists-betaprime-logpdf
v0.3.1
Published
Beta prime distribution logarithm of probability density function (PDF).
Readme
Logarithm of Probability Density Function
Beta prime distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a beta prime random variable is
where α > 0 is the first shape parameter and β > 0 is the second shape parameter.
Installation
npm install @stdlib/stats-base-dists-betaprime-logpdfUsage
var logpdf = require( '@stdlib/stats-base-dists-betaprime-logpdf' );logpdf( x, alpha, beta )
Evaluates the natural logarithm of the probability density function (PDF) for a beta prime distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var y = logpdf( 0.5, 0.5, 1.0 );
// returns ~-0.955
y = logpdf( 0.1, 1.0, 1.0 );
// returns ~-0.191
y = logpdf( 0.8, 4.0, 2.0 );
// returns ~-1.2If provided an input value x outside smaller or equal to zero, the function returns -Infinity.
var y = logpdf( -0.1, 1.0, 1.0 );
// returns -InfinityIf provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 1.0, NaN );
// returns NaNIf provided alpha <= 0, the function returns NaN.
var y = logpdf( 0.5, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.5, -1.0, 1.0 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = logpdf( 0.5, 1.0, 0.0 );
// returns NaN
y = logpdf( 0.5, 1.0, -1.0 );
// returns NaNlogpdf.factory( alpha, beta )
Returns a function for evaluating the natural logarithm of the PDF for a beta prime distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
var mylogPDF = logpdf.factory( 0.5, 0.5 );
var y = mylogPDF( 0.8 );
// returns ~-1.62
y = mylogPDF( 0.3 );
// returns ~-0.805Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( '@stdlib/stats-base-dists-betaprime-logpdf' );
var opts = {
'dtype': 'float64'
};
var alpha = uniform( 10, EPS, 5.0, opts );
var beta = uniform( 10, EPS, 5.0, opts );
var x = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'x: %0.4f, α: %0.4f, β: %0.4f, ln(f(x;α,β)): %0.4f', x, alpha, beta, logpdf );C APIs
Usage
#include "stdlib/stats/base/dists/betaprime/logpdf.h"stdlib_base_dists_betaprime_logpdf( x, alpha, beta )
Evaluates the natural logarithm of the probability density function (PDF) for a beta prime distribution with parameters alpha (first shape parameter) and beta (second shape parameter).
double y = stdlib_base_dists_betaprime_logpdf( 0.5, 0.5, 1.0 );
// returns ~-0.955The function accepts the following arguments:
- x:
[in] doubleinput value. - alpha:
[in] doublefirst shape parameter. - beta:
[in] doublesecond shape parameter.
double stdlib_base_dists_betaprime_logpdf( const double x, const double alpha, const double beta );Examples
#include "stdlib/stats/base/dists/betaprime/logpdf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double alpha;
double beta;
double x;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
x = random_uniform( 0.0, 1.0 );
alpha = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 );
beta = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 );
y = stdlib_base_dists_betaprime_logpdf( x, alpha, beta );
printf( "x: %lf, α: %lf, β: %lf, ln(f(x;α,β)): %lf\n", x, alpha, beta, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
