@stdlib/stats-base-dists-binomial-entropy
v0.3.1
Published
Binomial distribution entropy.
Readme
Entropy
The entropy (in nats) for a binomial random variable is
where n is the number of trials and p is the success probability.
Installation
npm install @stdlib/stats-base-dists-binomial-entropyUsage
var entropy = require( '@stdlib/stats-base-dists-binomial-entropy' );entropy( n, p )
Returns the entropy of a binomial distribution with number of trials n and success probability p (in nats).
var v = entropy( 20, 0.1 );
// returns ~1.667
v = entropy( 50, 0.5 );
// returns ~2.682If provided NaN as any argument, the function returns NaN.
var v = entropy( NaN, 0.5 );
// returns NaN
v = entropy( 20, NaN );
// returns NaNIf provided a number of trials n which is not a nonnegative integer, the function returns NaN.
var v = entropy( 1.5, 0.5 );
// returns NaN
v = entropy( -2.0, 0.5 );
// returns NaNIf provided a success probability p outside of [0,1], the function returns NaN.
var v = entropy( 20, -1.0 );
// returns NaN
v = entropy( 20, 1.5 );
// returns NaNExamples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var entropy = require( '@stdlib/stats-base-dists-binomial-entropy' );
var opts = {
'dtype': 'float64'
};
var n = discreteUniform( 10, 0, 100, opts );
var p = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'n: %0.4f, p: %0.4f, H(X;n,p): %0.4f', n, p, entropy );C APIs
Usage
#include "stdlib/stats/base/dists/binomial/entropy.h"stdlib_base_dists_binomial_entropy( n, p )
Evaluates the entropy of a binomial distribution with n the number of trials and p the success probability.
double out = stdlib_base_dists_binomial_entropy( 20, 0.1 );
// returns ~1.667The function accepts the following arguments:
- n:
[in] int32_tnumber of trials. - p:
[in] doublesuccess probability.
double stdlib_base_dists_binomial_entropy( const int32_t n, const double p );Examples
#include "stdlib/stats/base/dists/binomial/entropy.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
static int32_t random_int( const int32_t min, const int32_t max ) {
return min + (int32_t)( random_uniform( 0.0, 1.0 ) * ( max - min + 1 ) );
}
int main( void ) {
int32_t n;
double p;
double v;
int i;
for ( i = 0; i < 25; i++ ) {
n = random_int( 0, 100 );
p = random_uniform( 0.0, 1.0 );
v = stdlib_base_dists_binomial_entropy( n, p );
printf( "n: %d, p: %lf, H(X;n,p): %lf\n", n, p, v );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
