@stdlib/stats-base-dists-bradford-entropy
v0.1.1
Published
Bradford distribution differential entropy.
Downloads
271
Readme
Entropy
Bradford distribution differential entropy.
The differential entropy (in nats) for a Bradford random variable is
where c is the shape parameter.
Installation
npm install @stdlib/stats-base-dists-bradford-entropyUsage
var entropy = require( '@stdlib/stats-base-dists-bradford-entropy' );entropy( c )
Returns the differential entropy of a Bradford distribution with shape parameter c (in nats).
var v = entropy( 0.2 );
// returns ~-0.001
v = entropy( 10.0 );
// returns ~-0.229If provided a shape parameter c <= 0, the function returns NaN.
var v = entropy( 0.0 );
// returns NaN
v = entropy( -1.5 );
// returns NaNExamples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var entropy = require( '@stdlib/stats-base-dists-bradford-entropy' );
var opts = {
'dtype': 'float64'
};
var c = uniform( 10, 0.1, 10.0, opts );
logEachMap( 'c: %0.4f, h(X;c): %0.4f', c, entropy );C APIs
Usage
#include "stdlib/stats/base/dists/bradford/entropy.h"stdlib_base_dists_bradford_entropy( c )
Returns the differential entropy of a Bradford distribution with shape parameter c.
double y = stdlib_base_dists_bradford_entropy( 0.5 );
// returns ~-0.007The function accepts the following arguments:
- c:
[in] doubleshape parameter.
double stdlib_base_dists_bradford_entropy( const double c );Examples
#include "stdlib/stats/base/dists/bradford/entropy.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double c;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
c = random_uniform( 0.01, 10.0 );
y = stdlib_base_dists_bradford_entropy( c );
printf( "c: %lf, h(X;c): %lf\n", c, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
