@stdlib/stats-base-dists-exponential-logpdf
v0.3.0
Published
Natural logarithm of the probability density function (PDF) for an exponential distribution.
Readme
Logarithm of Probability Density Function
Evaluate the natural logarithm of the probability density function (PDF) for an exponential distribution.
The probability density function (PDF) for an exponential random variable is
where λ is the rate parameter.
Installation
npm install @stdlib/stats-base-dists-exponential-logpdfUsage
var logpdf = require( '@stdlib/stats-base-dists-exponential-logpdf' );logpdf( x, lambda )
Evaluates the natural logarithm of the probability density function (PDF) for an exponential distribution with rate parameter lambda.
var y = logpdf( 2.0, 0.3 );
// returns ~-1.804
y = logpdf( 2.0, 1.0 );
// returns ~-2.0If provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 0.0 );
// returns NaN
y = logpdf( 0.0, NaN );
// returns NaNIf provided lambda < 0, the function returns NaN.
var y = logpdf( 2.0, -1.0 );
// returns NaNlogpdf.factory( lambda )
Returns a function for evaluating the natural logarithm of the probability density function (PDF) for an exponential distribution with rate parameter lambda.
var mylogpdf = logpdf.factory( 0.1 );
var y = mylogpdf( 8.0 );
// returns ~-3.103
y = mylogpdf( 5.0 );
// returns ~-2.803Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var logpdf = require( '@stdlib/stats-base-dists-exponential-logpdf' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 10, 0.0, 10.0, opts );
var lambda = uniform( 10, 0.0, 10.0, opts );
logEachMap( 'x: %0.4f, λ: %0.4f, ln(f(x;λ)): %0.4f', x, lambda, logpdf );C APIs
Usage
#include "stdlib/stats/base/dists/exponential/logpdf.h"stdlib_base_dists_exponential_logpdf( x, lambda )
Evaluates the natural logarithm of the probability density function (PDF) for an exponential distribution with rate parameter lambda.
double out = stdlib_base_dists_exponential_logpdf( 2.0, 0.7 );
// returns ~0.173The function accepts the following arguments:
- x:
[in] doubleinput value. - lambda:
[in] doublerate parameter.
double stdlib_base_dists_exponential_logpdf( const double x, const double lambda );Examples
#include "stdlib/stats/base/dists/exponential/logpdf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double lambda;
double x;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( 0.0, 100.0 );
lambda = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 100.0 );
y = stdlib_base_dists_exponential_logpdf( x, lambda );
printf( "x: %lf, λ: %lf, ln(f(x;λ)): %lf\n", x, lambda, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
