@stdlib/stats-base-dists-exponential-mgf
v0.3.1
Published
Exponential distribution moment-generating function (MGF).
Readme
Moment-Generating Function
Exponential distribution moment-generating function (MGF).
The moment-generating function for an exponential random variable is
where lambda > 0 is the rate parameter. For t >= lambda, the MGF is undefined.
Installation
npm install @stdlib/stats-base-dists-exponential-mgfUsage
var mgf = require( '@stdlib/stats-base-dists-exponential-mgf' );mgf( t, lambda )
Evaluates the moment-generating function (MGF) for an exponential distribution.
var y = mgf( 2.0, 3.0 );
// returns 3.0
y = mgf( 0.4, 1.2 );
// returns 1.5If provided NaN as any argument, the function returns NaN.
var y = mgf( NaN, 0.0 );
// returns NaN
y = mgf( 0.0, NaN );
// returns NaNIf provided lambda < 0 or t >= lambda, the function returns NaN.
var y = mgf( -2.0, -1.0 );
// returns NaN
y = mgf( 3.0, 2.0 );
// returns NaNmgf.factory( lambda )
Returns a function for evaluating the moment-generating function of an exponential distribution with parameter lambda(rate parameter).
var mymgf = mgf.factory( 4.0 );
var y = mymgf( 3.0 );
// returns 4.0Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var mgf = require( '@stdlib/stats-base-dists-exponential-mgf' );
var opts = {
'dtype': 'float64'
};
var t = uniform( 10, 0.0, 10.0, opts );
var lambda = uniform( 10, 0.0, 10.0, opts );
logEachMap( 'x: %0.4f, λ: %0.4f, M_X(t;λ): %0.4f', t, lambda, mgf );C APIs
Usage
#include "stdlib/stats/base/dists/exponential/mgf.h"stdlib_base_dists_exponential_mgf( t, lambda )
Evaluates the moment-generating function (MGF) for an exponential distribution.
double out = stdlib_base_dists_exponential_mgf( 2.0, 3.0 );
// returns 3.0The function accepts the following arguments:
- t:
[in] doubleinput value. - lambda:
[in] doublerate parameter.
double stdlib_base_dists_exponential_mgf( const double t, const double lambda );Examples
#include "stdlib/stats/base/dists/exponential/mgf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double lambda;
double t;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
t = random_uniform( -1.0, 1.0 );
lambda = random_uniform( 1.1, 10.0 );
y = stdlib_base_dists_exponential_mgf( t, lambda );
printf( "t: %lf, λ: %lf, M_X(t;λ): %lf\n", t, lambda, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
