@stdlib/stats-base-dists-geometric-logpmf
v0.3.1
Published
Geometric distribution logarithm of probability mass function (PMF).
Downloads
461
Readme
Logarithm of Probability Mass Function
Geometric distribution logarithm of probability mass function (PMF).
The probability mass function (PMF) for a geometric random variable is defined as
where 0 <= p <= 1 is the success probability. The random variable X denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Installation
npm install @stdlib/stats-base-dists-geometric-logpmfUsage
var logpmf = require( '@stdlib/stats-base-dists-geometric-logpmf' );logpmf( x, p )
Evaluates the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.
var y = logpmf( 4.0, 0.3 );
// returns ~-2.631
y = logpmf( 2.0, 0.7 );
// returns ~-2.765
y = logpmf( -1.0, 0.5 );
// returns -InfinityIf provided NaN as any argument, the function returns NaN.
var y = logpmf( NaN, 0.0 );
// returns NaN
y = logpmf( 0.0, NaN );
// returns NaNIf provided a success probability p outside of the interval [0,1], the function returns NaN.
var y = logpmf( 2.0, -1.0 );
// returns NaN
y = logpmf( 2.0, 1.5 );
// returns NaNlogpmf.factory( p )
Returns a function for evaluating the logarithm of the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.
var mylogpmf = logpmf.factory( 0.5 );
var y = mylogpmf( 3.0 );
// returns ~-2.773
y = mylogpmf( 1.0 );
// returns ~-1.386Notes
- In virtually all cases, using the
logpmforlogcdffunctions is preferable to manually computing the logarithm of thepmforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var logpmf = require( '@stdlib/stats-base-dists-geometric-logpmf' );
var opts = {
'dtype': 'float64'
};
var p = uniform( 10, 0.0, 1.0, opts );
var x = discreteUniform( 10, 0, 5, opts );
logEachMap( 'x: %d, p: %0.4f, ln( P( X = x; p ) ): %0.4f', x, p, logpmf );C APIs
Usage
#include "stdlib/stats/base/dists/geometric/logpmf.h"stdlib_base_dists_geometric_logpmf( x, p )
Evaluates the logarithm of the probability mass function (PMF) of the geometric distribution with success probability 0 <= p <= 1.
double out = stdlib_base_dists_geometric_logpmf( 4.0, 0.3 );
// returns ~-2.631The function accepts the following arguments:
- x:
[in] doubleinput value. - p:
[in] doubleprobability of success.
double stdlib_base_dists_geometric_logpmf( const double x, const double p );Examples
#include "stdlib/stats/base/dists/geometric/logpmf.h"
#include "stdlib/math/base/special/round.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double x;
double p;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = stdlib_base_round( random_uniform( 0.0, 40.0 ) );
p = random_uniform( 0.0, 1.0 );
y = stdlib_base_dists_geometric_logpmf( x, p );
printf( "x: %lf, p: %lf, ln(P(X=x;p)): %lf\n", x, p, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
