@stdlib/stats-base-dists-geometric-mean
v0.3.1
Published
Geometric distribution expected value.
Readme
Mean
Geometric distribution expected value.
The expected value for a geometric random variable is
where p is the success probability.
Installation
npm install @stdlib/stats-base-dists-geometric-meanUsage
var mean = require( '@stdlib/stats-base-dists-geometric-mean' );mean( p )
Returns the expected value of a geometric distribution with success probability p.
var v = mean( 0.1 );
// returns 9.0
v = mean( 0.5 );
// returns 1.0If provided a success probability p outside of [0,1], the function returns NaN.
var v = mean( NaN );
// returns NaN
v = mean( 1.5 );
// returns NaN
v = mean( -1.0 );
// returns NaNExamples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var mean = require( '@stdlib/stats-base-dists-geometric-mean' );
var opts = {
'dtype': 'float64'
};
var p = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'p: %0.4f, E(X;p): %0.4f', p, mean );C APIs
Usage
#include "stdlib/stats/base/dists/geometric/mean.h"stdlib_base_dists_geometric_mean( p )
Returns the expected value of a geometric distribution with success probability p.
double out = stdlib_base_dists_geometric_mean( 0.5 );
// returns 1.0The function accepts the following arguments:
- p:
[in] doublesuccess probability.
double stdlib_base_dists_geometric_mean( const double p );Examples
#include "stdlib/stats/base/dists/geometric/mean.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double p;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
p = random_uniform( 0.0, 1.0 );
y = stdlib_base_dists_geometric_mean( p );
printf( "p: %lf, E(X;p): %lf\n", p, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
