@stdlib/stats-base-dists-geometric-pmf
v0.3.1
Published
Geometric distribution probability mass function (PMF).
Readme
Probability Mass Function
Geometric distribution probability mass function (PMF).
The probability mass function (PMF) for a geometric random variable is defined as
where 0 <= p <= 1 is the success probability. The random variable X denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Installation
npm install @stdlib/stats-base-dists-geometric-pmfUsage
var pmf = require( '@stdlib/stats-base-dists-geometric-pmf' );pmf( x, p )
Evaluates the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.
var y = pmf( 4.0, 0.3 );
// returns ~0.072
y = pmf( 2.0, 0.7 );
// returns ~0.063
y = pmf( -1.0, 0.5 );
// returns 0.0If provided NaN as any argument, the function returns NaN.
var y = pmf( NaN, 0.0 );
// returns NaN
y = pmf( 0.0, NaN );
// returns NaNIf provided a success probability p outside of the interval [0,1], the function returns NaN.
var y = pmf( 2.0, -1.0 );
// returns NaN
y = pmf( 2.0, 1.5 );
// returns NaNpmf.factory( p )
Returns a function for evaluating the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.
var mypmf = pmf.factory( 0.5 );
var y = mypmf( 3.0 );
// returns 0.0625
y = mypmf( 1.0 );
// returns 0.25Examples
var uniform = require( '@stdlib/random-array-uniform' );
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var pmf = require( '@stdlib/stats-base-dists-geometric-pmf' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 5, opts );
var p = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'x: %d, p: %0.4f, P( X = x; p ): %0.4f', x, p, pmf );C APIs
Usage
#include "stdlib/stats/base/dists/geometric/pmf.h"stdlib_base_dists_geometric_pmf( x, p )
Evaluates the probability mass function (PMF) of a geometric distribution with success probability 0 <= p <= 1.
double out = stdlib_base_dists_geometric_pmf( 4.0, 0.3 );
// returns ~0.072The function accepts the following arguments:
- x:
[in] doubleinput value. - p:
[in] doubleprobability of success.
double stdlib_base_dists_geometric_pmf( const double x, const double p );Examples
#include "stdlib/stats/base/dists/geometric/pmf.h"
#include "stdlib/math/base/special/round.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double x;
double p;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = stdlib_base_round( random_uniform( 0, 40 ) );
p = random_uniform( 0.0, 1.0 );
y = stdlib_base_dists_geometric_pmf( x, p );
printf( "x: %lf, p: %lf, P(X=x;p): %lf\n", x, p, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
