@stdlib/stats-base-dists-halfnormal-entropy
v0.1.1
Published
Half-normal distribution differential entropy.
Downloads
174
Readme
Entropy
Half-normal distribution differential entropy.
The differential entropy (in nats) for a half-normal random variable is
where σ > 0 is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-halfnormal-entropyUsage
var entropy = require( '@stdlib/stats-base-dists-halfnormal-entropy' );entropy( sigma )
Returns the differential entropy of a half-normal distribution with scale sigma (in nats).
var y = entropy( 1.0 );
// returns ~0.7258
y = entropy( 5.0 );
// returns ~2.3352If provided sigma ≤ 0, the function returns NaN.
var y = entropy( -1.0 );
// returns NaNExamples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var entropy = require( '@stdlib/stats-base-dists-halfnormal-entropy' );
var opts = {
'dtype': 'float64'
};
var sigma = uniform( 10, 0.1, 20.0, opts );
logEachMap( 'σ: %0.4f, h(X;σ): %0.4f', sigma, entropy );C APIs
Usage
#include "stdlib/stats/base/dists/halfnormal/entropy.h"stdlib_base_dists_halfnormal_entropy( sigma )
Returns the differential entropy of a half-normal distribution.
double out = stdlib_base_dists_halfnormal_entropy( 1.0 );
// returns ~0.7258The function accepts the following arguments:
- sigma:
[in] doublescale parameter.
double stdlib_base_dists_halfnormal_entropy( const double sigma );Examples
#include "stdlib/stats/base/dists/halfnormal/entropy.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double sigma;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
sigma = random_uniform( 0.1, 20.0 );
y = stdlib_base_dists_halfnormal_entropy( sigma );
printf( "σ: %lf, h(σ): %lf\n", sigma, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
