@stdlib/stats-base-dists-halfnormal-kurtosis
v0.1.1
Published
Half-normal distribution excess kurtosis.
Readme
Kurtosis
Half-normal distribution excess kurtosis.
The excess kurtosis of a half-normal distribution with scale sigma > 0 is
Installation
npm install @stdlib/stats-base-dists-halfnormal-kurtosisUsage
var kurtosis = require( '@stdlib/stats-base-dists-halfnormal-kurtosis' );kurtosis( sigma )
Returns the excess kurtosis of a half-normal distribution with scale parameter sigma.
var x = kurtosis( 1.0 );
// returns ~0.869
var y = kurtosis( 4.0 );
// returns ~0.869If provided sigma <= 0, the function returns NaN.
var x = kurtosis( 0.0 );
// returns NaN
var y = kurtosis( -1.0 );
// returns NaNExamples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var kurtosis = require( '@stdlib/stats-base-dists-halfnormal-kurtosis' );
var opts = {
'dtype': 'float64'
};
var sigma = uniform( 10, 0.0, 20.0, opts );
logEachMap( 'σ: %0.4f, Kurt(X;σ): %0.4f', sigma, kurtosis );C APIs
Usage
#include "stdlib/stats/base/dists/halfnormal/kurtosis.h"stdlib_base_dists_halfnormal_kurtosis( sigma )
Returns the excess kurtosis of a half-normal distribution with scale parameter sigma.
double out = stdlib_base_dists_halfnormal_kurtosis( 1.0 );
// returns ~0.869The function accepts the following arguments:
- sigma:
[in] doublescale parameter.
double stdlib_base_dists_halfnormal_kurtosis( const double sigma );Examples
#include "stdlib/stats/base/dists/halfnormal/kurtosis.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double sigma;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
sigma = random_uniform( 0.0, 20.0 );
y = stdlib_base_dists_halfnormal_kurtosis( sigma );
printf( "σ: %lf, Kurt(σ): %lf\n", sigma, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
