@stdlib/stats-base-dists-hypergeometric-pmf
v0.3.1
Published
Hypergeometric distribution probability mass function (PMF).
Readme
Probability Mass Function
Hypergeometric distribution probability mass function (PMF).
Imagine a scenario with a population of size N, of which a subpopulation of size K can be considered successes. We draw n observations from the total population. Defining the random variable X as the number of successes in the n draws, X is said to follow a hypergeometric distribution. The probability mass function (PMF) for a hypergeometric random variable is given by
Installation
npm install @stdlib/stats-base-dists-hypergeometric-pmfUsage
var pmf = require( '@stdlib/stats-base-dists-hypergeometric-pmf' );pmf( x, N, K, n )
Evaluates the probability mass function (PMF) for a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).
var y = pmf( 1.0, 8, 4, 2 );
// returns ~0.571
y = pmf( 2.0, 8, 4, 2 );
// returns ~0.214
y = pmf( 0.0, 8, 4, 2 );
// returns ~0.214
y = pmf( 1.5, 8, 4, 2 );
// returns 0.0If provided NaN as any argument, the function returns NaN.
var y = pmf( NaN, 10, 5, 2 );
// returns NaN
y = pmf( 0.0, NaN, 5, 2 );
// returns NaN
y = pmf( 0.0, 10, NaN, 2 );
// returns NaN
y = pmf( 0.0, 10, 5, NaN );
// returns NaNIf provided a population size N, subpopulation size K or draws n which is not a nonnegative integer, the function returns NaN.
var y = pmf( 2.0, 10.5, 5, 2 );
// returns NaN
y = pmf( 2.0, 10, 1.5, 2 );
// returns NaN
y = pmf( 2.0, 10, 5, -2.0 );
// returns NaNIf the number of draws n exceeds population size N, the function returns NaN.
var y = pmf( 2.0, 10, 5, 12 );
// returns NaN
y = pmf( 2.0, 8, 3, 9 );
// returns NaNpmf.factory( N, K, n )
Returns a function for evaluating the probability mass function (PMF) of a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).
var mypmf = pmf.factory( 30, 20, 5 );
var y = mypmf( 4.0 );
// returns ~0.34
y = mypmf( 1.0 );
// returns ~0.029Examples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var pmf = require( '@stdlib/stats-base-dists-hypergeometric-pmf' );
var i;
var N;
var K;
var n;
var x;
var y;
for ( i = 0; i < 10; i++ ) {
x = round( randu() * 5.0 );
N = round( randu() * 20.0 );
K = round( randu() * N );
n = round( randu() * N );
y = pmf( x, N, K, n );
console.log( 'x: %d, N: %d, K: %d, n: %d, P(X=x;N,K,n): %d', x, N, K, n, y.toFixed( 4 ) );
}C APIs
Usage
#include "stdlib/stats/base/dists/hypergeometric/pmf.h"stdlib_base_dists_hypergeometric_pmf( x, N, K, n )
Evaluates the probability mass function (PMF) for a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).
double out = stdlib_base_dists_hypergeometric_pmf( 1.0, 8, 4, 2 );
// returns ~0.571The function accepts the following arguments:
- x:
[in] doubleinput value. - N:
[in] int32_tpopulation size. - K:
[in] int32_tsubpopulation size. - n:
[in] int32_tnumber of draws.
double stdlib_base_dists_hypergeometric_pmf( const double x, const int32_t N, const int32_t K, const int32_t n );Examples
#include "stdlib/stats/base/dists/hypergeometric/pmf.h"
#include "stdlib/math/base/special/round.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v * ( max - min ) );
}
int main( void ) {
int32_t N;
int32_t K;
int32_t n;
double x;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
x = stdlib_base_round( random_uniform( 0.0, 5.0 ) );
N = stdlib_base_round( random_uniform( 0.0, 20.0 ) );
K = stdlib_base_round( random_uniform( 0.0, N ) );
n = stdlib_base_round( random_uniform( 0.0, N ) );
y = stdlib_base_dists_hypergeometric_pmf( x, N, K, n );
printf( "x: %lf, N: %d, K: %d, n: %d, P(X=x;N,K,n): %lf\n", x, N, K, n, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
