@stdlib/stats-base-dists-hypergeometric-stdev
v0.3.1
Published
Hypergeometric distribution standard deviation.
Readme
Standard Deviation
Hypergeometric distribution standard deviation.
Imagine a scenario with a population of size N, of which a subpopulation of size K can be considered successes. We draw n observations from the total population. Defining the random variable X as the number of successes in the n draws, X is said to follow a hypergeometric distribution. The standard deviation for a hypergeometric random variable is
Installation
npm install @stdlib/stats-base-dists-hypergeometric-stdevUsage
var stdev = require( '@stdlib/stats-base-dists-hypergeometric-stdev' );stdev( N, K, n )
Returns the standard deviation of a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).
var v = stdev( 16, 11, 4 );
// returns ~0.829
v = stdev( 2, 1, 1 );
// returns 0.5If provided NaN as any argument, the function returns NaN.
var v = stdev( NaN, 10, 4 );
// returns NaN
v = stdev( 20, NaN, 4 );
// returns NaN
v = stdev( 20, 10, NaN );
// returns NaNIf provided a population size N, subpopulation size K, or draws n which is not a nonnegative integer, the function returns NaN.
var v = stdev( 10.5, 5, 2 );
// returns NaN
v = stdev( 10, 1.5, 2 );
// returns NaN
v = stdev( 10, 5, -2.0 );
// returns NaNIf the number of draws n or the subpopulation size K exceed population size N, the function returns NaN.
var v = stdev( 10, 5, 12 );
// returns NaN
v = stdev( 10, 12, 5 );
// returns NaNExamples
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var stdev = require( '@stdlib/stats-base-dists-hypergeometric-stdev' );
var v;
var i;
var N;
var K;
var n;
for ( i = 0; i < 10; i++ ) {
N = round( randu() * 20 );
K = round( randu() * N );
n = round( randu() * K );
v = stdev( N, K, n );
console.log( 'N: %d, K: %d, n: %d, SD(X;N,K,n): %d', N, K, n, v.toFixed( 4 ) );
}C APIs
Usage
#include "stdlib/stats/base/dists/hypergeometric/stdev.h"stdlib_base_dists_hypergeometric_stdev( N, K, n )
Returns the standard deviation of a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).
double out = stdlib_base_dists_hypergeometric_stdev( 16, 11, 4 );
// returns ~0.829The function accepts the following arguments:
- N:
[in] int32_tpopulation size. - K:
[in] int32_tsubpopulation size. - n:
[in] int32_tnumber of draws.
double stdlib_base_dists_hypergeometric_stdev( const int32_t N, const int32_t K, const int32_t n );Examples
#include "stdlib/stats/base/dists/hypergeometric/stdev.h"
#include "stdlib/math/base/special/ceil.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v * ( max - min ) );
}
int main( void ) {
double sd;
int32_t N;
int32_t K;
int32_t n;
int i;
for ( i = 0; i < 10; i++ ) {
N = stdlib_base_ceil( random_uniform( 2.0, 100.0 ) );
K = stdlib_base_ceil( random_uniform( 0.0, N ) );
n = stdlib_base_ceil( random_uniform( 0.0, N ) );
sd = stdlib_base_dists_hypergeometric_stdev( N, K, n );
printf( "N: %d, K: %d, n: %d, SD(X;N,K,n): %lf\n", N, K, n, sd );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
