@stdlib/stats-base-dists-logistic-logpdf
v0.3.1
Published
Logistic distribution logarithm of probability density function (PDF).
Readme
Logarithm of Probability Density Function
Logistic distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a logistic random variable is
where mu is the location parameter and s is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-logistic-logpdfUsage
var logpdf = require( '@stdlib/stats-base-dists-logistic-logpdf' );logpdf( x, mu, s )
Evaluates the logarithm of the probability density function (PDF) for a logistic distribution with parameters mu (location parameter) and s (scale parameter).
var y = logpdf( 2.0, 0.0, 1.0 );
// returns ~-2.254
y = logpdf( -1.0, 4.0, 4.0 );
// returns ~-3.14If provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 0.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 0.0, NaN );
// returns NaNIf provided s < 0, the function returns NaN.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaNIf provided s = 0, the function evaluates the logarithm of the PDF of a degenerate distribution centered at mu.
var y = logpdf( 2.0, 8.0, 0.0 );
// returns -Infinity
y = logpdf( 8.0, 8.0, 0.0 );
// returns Infinitylogpdf.factory( mu, s )
Returns a function for evaluating the logarithm of the probability density function (PDF) of a logistic distribution with parameters mu (location parameter) and s (scale parameter).
var mylogpdf = logpdf.factory( 10.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-2.079
y = mylogpdf( 5.0 );
// returns ~-3.351Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var logpdf = require( '@stdlib/stats-base-dists-logistic-logpdf' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 10, 0.0, 10.0, opts );
var mu = uniform( 10, 0.0, 10.0, opts );
var s = uniform( 10, 0.0, 10.0, opts );
logEachMap( 'x: %0.4f, µ: %0.4f, s: %0.4f, ln(f(x;µ,s)): %0.4f', x, mu, s, logpdf );C APIs
Usage
#include "stdlib/stats/base/dists/logistic/logpdf.h"stdlib_base_dists_logistic_logpdf( x, mu, s )
Evaluates the logarithm of the probability density function (PDF) for a logistic distribution with location parameter mu and scale parameter s at a value x.
double out = stdlib_base_dists_logistic_logpdf( 2.0, 0.0, 1.0 );
// returns ~-2.254The function accepts the following arguments:
- x:
[in] doubleinput value. - mu:
[in] doublelocation parameter. - s:
[in] doublescale parameter.
double stdlib_base_dists_logistic_logpdf( const double x, const double mu, const double s );Examples
#include "stdlib/stats/base/dists/logistic/logpdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double mu;
double s;
double x;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( -5.0, 5.0 );
mu = random_uniform( -5.0, 5.0 );
s = random_uniform( 0.0, 20.0 );
y = stdlib_base_dists_logistic_logpdf( x, mu, s );
printf( "x: %lf, µ: %lf, s: %lf, ln(f(x;µ,s)): %lf\n", x, mu, s, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
