@stdlib/stats-base-dists-triangular-quantile
v0.3.1
Published
Triangular distribution quantile function.
Readme
Quantile Function
Triangular distribution quantile function.
The quantile function for a Triangular random variable is
where a is the lower limit, b is the upper limit and c is the mode.
Installation
npm install @stdlib/stats-base-dists-triangular-quantileUsage
var quantile = require( '@stdlib/stats-base-dists-triangular-quantile' );quantile( p, a, b, c )
Evaluates the quantile function for a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).
var y = quantile( 0.9, -1.0, 1.0, 0.0 );
// returns ~0.553
y = quantile( 0.1, -1.0, 1.0, 0.5 );
// returns ~-0.452
y = quantile( 0.1, -20.0, 0.0, -2.0 );
// returns -14.0
y = quantile( 0.8, 0.0, 20.0, 0.0 );
// returns ~11.056If provided a probability p outside the interval [0,1], the function returns NaN.
var y = quantile( 1.9, 0.0, 1.0, 0.5 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0, 0.5 );
// returns NaNIf provided NaN as any argument, the function returns NaN.
var y = quantile( NaN, 0.0, 1.0, 0.5 );
// returns NaN
y = quantile( 0.1, NaN, 1.0, 0.5 );
// returns NaN
y = quantile( 0.1, 0.0, NaN, 0.5 );
// returns NaN
y = quantile( 0.1, 0.0, 1.0, NaN );
// returns NaNIf provided parameters not satisfying a <= c <= b, the function returns NaN.
var y = quantile( 0.1, 1.0, 0.0, 1.5 );
// returns NaN
y = quantile( 0.1, 1.0, 0.0, -1.0 );
// returns NaN
y = quantile( 0.1, 0.0, -1.0, 0.5 );
// returns NaNquantile.factory( a, b, c )
Returns a function for evaluating the quantile function of a triangular distribution with parameters a (lower limit), b (upper limit) and c (mode).
var myquantile = quantile.factory( 2.0, 4.0, 2.5 );
var y = myquantile( 0.4 );
// returns ~2.658
y = myquantile( 0.8 );
// returns ~3.225Examples
var randu = require( '@stdlib/random-base-randu' );
var quantile = require( '@stdlib/stats-base-dists-triangular-quantile' );
var a;
var b;
var c;
var p;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
p = randu();
a = randu() * 10.0;
b = a + (randu() * 40.0);
c = a + ((b-a) * randu());
y = quantile( p, a, b, c );
console.log( 'p: %d, a: %d, b: %d, c: %d, Q(p;a,b,c): %d', p.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
}C APIs
Usage
#include "stdlib/stats/base/dists/triangular/quantile.h"stdlib_base_dists_triangular_quantile( p, a, b, c )
Evaluates the quantile function for a triangular distribution with parameters a (lower limit), b (upper limit), and c (mode).
double out = stdlib_base_dists_triangular_quantile( 0.9, -1.0, 1.0, 0.0 );
// returns ~0.553The function accepts the following arguments:
- p:
[in] doubleinput probability. - a:
[in] doubleminimum support. - b:
[in] doublemaximum support. - c:
[in] doublemode.
double stdlib_base_dists_triangular_quantile( const double p, const double a, const double b, const double c );Examples
#include "stdlib/stats/base/dists/triangular/quantile.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double a;
double b;
double c;
double p;
double v;
int i;
for ( i = 0; i < 25; i++ ) {
p = random_uniform( 0.0, 1.0 );
a = random_uniform( 0.0, 10.0 );
b = random_uniform( a, a+10.0 );
c = random_uniform( a, b );
v = stdlib_base_dists_triangular_quantile( p, a, b, c );
printf( "p: %lf, a: %lf, b: %lf, c: %lf, Q(p;a,b,c): %lf\n", p, a, b, c, v );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
