@stdlib/stats-base-dists-uniform-logcdf
v0.3.1
Published
Uniform distribution logarithm of cumulative distribution function (CDF).
Readme
Logarithm of Cumulative Distribution Function
Uniform distribution logarithm of cumulative distribution function.
The cumulative distribution function for a continuous uniform random variable is
where a is the minimum support and b is the maximum support. The parameters must satisfy a < b.
Installation
npm install @stdlib/stats-base-dists-uniform-logcdfUsage
var logcdf = require( '@stdlib/stats-base-dists-uniform-logcdf' );logcdf( x, a, b )
Evaluates the logarithm of the cumulative distribution function (CDF) for a uniform distribution with parameters a (minimum support) and b (maximum support).
var y = logcdf( 9.0, 0.0, 10.0 );
// returns ~-0.105
y = logcdf( 0.5, 0.0, 2.0 );
// returns ~-1.386
y = logcdf( -Infinity, 2.0, 4.0 );
// returns -Infinity
y = logcdf( +Infinity, 2.0, 4.0 );
// returns 0.0If provided NaN as any argument, the function returns NaN.
var y = logcdf( NaN, 0.0, 1.0 );
// returns NaN
y = logcdf( 0.0, NaN, 1.0 );
// returns NaN
y = logcdf( 0.0, 0.0, NaN );
// returns NaNIf provided a >= b, the function returns NaN.
var y = logcdf( 1.0, 2.5, 2.0 );
// returns NaNlogcdf.factory( a, b )
Returns a function for evaluating the logarithm of the cumulative distribution function of a uniform distribution with parameters a (minimum support) and b (maximum support).
var mylogcdf = logcdf.factory( 0.0, 10.0 );
var y = mylogcdf( 0.5 );
// returns ~-2.996
y = mylogcdf( 8.0 );
// returns ~-0.223Notes
- In virtually all cases, using the
logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
Examples
var randu = require( '@stdlib/random-base-randu' );
var logcdf = require( '@stdlib/stats-base-dists-uniform-logcdf' );
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
x = (randu() * 20.0) - 10.0;
a = (randu() * 20.0) - 20.0;
b = a + (randu() * 40.0);
y = logcdf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, ln(F(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}C APIs
Usage
#include "stdlib/stats/base/dists/uniform/logcdf.h"stdlib_base_dists_uniform_logcdf( x, a, b )
Evaluates the logarithm of the cumulative distribution function of a uniform distribution with parameters a (minimum support) and b (maximum support).
double out = stdlib_base_dists_uniform_logcdf( 9.0, 0.0, 10.0 );
// returns ~-0.105The function accepts the following arguments:
- x:
[in] doubleinput value. - a:
[in] doubleminimum support. - b:
[in] doublemaximum support.
double stdlib_base_dists_uniform_logcdf( const double x, const double a, const double b );Examples
#include "stdlib/stats/base/dists/uniform/logcdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double a;
double b;
double x;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( -10.0, 10.0 );
a = random_uniform( -20.0, 0.0 );
b = random_uniform( a, a+40.0 );
y = stdlib_base_dists_uniform_logcdf( x, a, b );
printf( "x: %lf, a: %lf, b: %lf, ln(F(x;a,b)): %lf\n", x, a, b, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
