@stdlib/stats-base-dists-uniform-pdf
v0.3.1
Published
Uniform distribution probability density function (PDF).
Readme
Probability Density Function
Uniform distribution probability density function (PDF).
The probability density function (PDF) for a continuous uniform random variable is
where a is the minimum support and b is the maximum support of the distribution. The parameters must satisfy a < b.
Installation
npm install @stdlib/stats-base-dists-uniform-pdfUsage
var pdf = require( '@stdlib/stats-base-dists-uniform-pdf' );pdf( x, a, b )
Evaluates the probability density function (PDF) for a continuous uniform distribution with parameters a (minimum support) and b (maximum support).
var y = pdf( 2.0, 0.0, 4.0 );
// returns 0.25
y = pdf( 5.0, 0.0, 4.0 );
// returns 0.0
y = pdf( 0.25, 0.0, 1.0 );
// returns 1.0If provided NaN as any argument, the function returns NaN.
var y = pdf( NaN, 0.0, 1.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0 );
// returns NaN
y = pdf( 0.0, 0.0, NaN );
// returns NaNIf provided a >= b, the function returns NaN.
var y = pdf( 2.5, 3.0, 2.0 );
// returns NaN
y = pdf( 2.5, 3.0, 3.0 );
// returns NaNpdf.factory( a, b )
Returns a function for evaluating the PDF of a continuous uniform distribution with parameters a (minimum support) and b (maximum support).
var myPDF = pdf.factory( 6.0, 7.0 );
var y = myPDF( 7.0 );
// returns 1.0
y = myPDF( 5.0 );
// returns 0.0Examples
var randu = require( '@stdlib/random-base-randu' );
var pdf = require( '@stdlib/stats-base-dists-uniform-pdf' );
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
x = (randu() * 20.0) - 10.0;
a = (randu() * 20.0) - 20.0;
b = a + (randu() * 40.0);
y = pdf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, f(x;a,b): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}C APIs
Usage
#include "stdlib/stats/base/dists/uniform/pdf.h"stdlib_base_dists_uniform_pdf( x, a, b )
Evaluates the probability density function (PDF) for a continuous uniform distribution with parameters a (minimum support) and b (maximum support).
double out = stdlib_base_dists_uniform_pdf( 2.0, 0.0, 4.0 );
// returns 0.25The function accepts the following arguments:
- x:
[in] doubleinput value. - a:
[in] doubleminimum support. - b:
[in] doublemaximum support.
double stdlib_base_dists_uniform_pdf( const double x, const double a, const double b );Examples
#include "stdlib/stats/base/dists/uniform/pdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double x;
double a;
double b;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
x = random_uniform( -10.0, 10.0 );
a = random_uniform( -20.0, 0.0 );
b = random_uniform( a, a+40.0 );
y = stdlib_base_dists_uniform_pdf( x, a, b );
printf( "x: %lf, a: %lf, b: %lf, f(x;a,b): %lf\n", x, a, b, y );
}
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
