@stdlib/stats-base-ndarray-dnanmeanpw
v0.1.1
Published
Compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values and using pairwise summation.
Readme
dnanmeanpw
Compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring
NaNvalues and using pairwise summation.
The arithmetic mean is defined as
Installation
npm install @stdlib/stats-base-ndarray-dnanmeanpwUsage
var dnanmeanpw = require( '@stdlib/stats-base-ndarray-dnanmeanpw' );dnanmeanpw( arrays )
Computes the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring NaN values and using pairwise summation.
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var xbuf = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var x = new ndarray( 'float64', xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
var v = dnanmeanpw( [ x ] );
// returns ~0.333The function has the following parameters:
- arrays: array-like object containing a one-dimensional input ndarray.
Notes
- If provided an empty one-dimensional ndarray, the function returns
NaN. - In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
Examples
var uniform = require( '@stdlib/random-base-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var ndarray = require( '@stdlib/ndarray-base-ctor' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var dnanmeanpw = require( '@stdlib/stats-base-ndarray-dnanmeanpw' );
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -50.0, 50.0 );
}
var xbuf = filledarrayBy( 10, 'float64', rand );
var x = new ndarray( 'float64', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );
var v = dnanmeanpw( [ x ] );
console.log( v );References
- Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
