@stdlib/stats-strided
v0.1.1
Published
Statistical operations for strided arrays.
Readme
Statistics
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Statistical operations for strided arrays.
Installation
npm install @stdlib/stats-stridedUsage
var ns = require( '@stdlib/stats-strided' );ns
Namespace containing APIs for performing statistical operations on strided arrays.
var o = ns;
// returns {...}The namespace exports the following:
- [
covarmtk( N, correction, meanx, x, strideX, meany, y, strideY )][@stdlib/stats/strided/covarmtk]: calculate the covariance of two strided arrays provided known means and using a one-pass textbook algorithm. - [
dcovarmtk( N, correction, meanx, x, strideX, meany, y, strideY )][@stdlib/stats/strided/dcovarmtk]: calculate the covariance of two double-precision floating-point strided arrays provided known means and using a one-pass textbook algorithm. - [
dcovmatmtk( order, orient, uplo, M, N, correction, means, strideM, A, LDA, B, LDB )][@stdlib/stats/strided/dcovmatmtk]: compute the covariance matrix for anMbyNdouble-precision floating-point matrixAand assign the results to a matrixBwhen provided known means and using a one-pass textbook algorithm. - [
dcumax( N, x, strideX, y, strideY )][@stdlib/stats/strided/dcumax]: calculate the cumulative maximum of double-precision floating-point strided array elements. - [
dcumaxabs( N, x, strideX, y, strideY )][@stdlib/stats/strided/dcumaxabs]: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements. - [
dcumin( N, x, strideX, y, strideY )][@stdlib/stats/strided/dcumin]: calculate the cumulative minimum of double-precision floating-point strided array elements. - [
dcuminabs( N, x, strideX, y, strideY )][@stdlib/stats/strided/dcuminabs]: calculate the cumulative minimum absolute value of double-precision floating-point strided array elements. - [
distances][@stdlib/stats/strided/distances]: distance metrics for strided arrays. - [
dmax( N, x, strideX )][@stdlib/stats/strided/dmax]: calculate the maximum value of a double-precision floating-point strided array. - [
dmaxabs( N, x, strideX )][@stdlib/stats/strided/dmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array. - [
dmaxabssorted( N, x, strideX )][@stdlib/stats/strided/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array. - [
dmaxsorted( N, x, strideX )][@stdlib/stats/strided/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array. - [
dmean( N, x, strideX )][@stdlib/stats/strided/dmean]: calculate the arithmetic mean of a double-precision floating-point strided array. - [
dmeankbn( N, x, strideX )][@stdlib/stats/strided/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm. - [
dmeankbn2( N, x, strideX )][@stdlib/stats/strided/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm. - [
dmeanli( N, x, strideX )][@stdlib/stats/strided/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [
dmeanlipw( N, x, strideX )][@stdlib/stats/strided/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation. - [
dmeanors( N, x, strideX )][@stdlib/stats/strided/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation. - [
dmeanpn( N, x, strideX )][@stdlib/stats/strided/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm. - [
dmeanpw( N, x, strideX )][@stdlib/stats/strided/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation. - [
dmeanstdev( N, correction, x, strideX, out, strideOut )][@stdlib/stats/strided/dmeanstdev]: calculate the mean and standard deviation of a double-precision floating-point strided array. - [
dmeanstdevpn( N, correction, x, strideX, out, strideOut )][@stdlib/stats/strided/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm. - [
dmeanvar( N, correction, x, strideX, out, strideOut )][@stdlib/stats/strided/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array. - [
dmeanvarpn( N, correction, x, strideX, out, strideOut )][@stdlib/stats/strided/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. - [
dmeanwd( N, x, strideX )][@stdlib/stats/strided/dmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm. - [
dmediansorted( N, x, strideX )][@stdlib/stats/strided/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array. - [
dmidrange( N, x, strideX )][@stdlib/stats/strided/dmidrange]: calculate the mid-range of a double-precision floating-point strided array. - [
dmin( N, x, strideX )][@stdlib/stats/strided/dmin]: calculate the minimum value of a double-precision floating-point strided array. - [
dminabs( N, x, strideX )][@stdlib/stats/strided/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array. - [
dminsorted( N, x, strideX )][@stdlib/stats/strided/dminsorted]: calculate the minimum value of a sorted double-precision floating-point strided array. - [
dmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask. - [
dmskmaxabs( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dmskmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array according to a mask. - [
dmskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dmskmidrange]: calculate the mid-range of a double-precision floating-point strided array according to a mask. - [
dmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask. - [
dmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dmskrange]: calculate the range of a double-precision floating-point strided array according to a mask. - [
dnanmax( N, x, strideX )][@stdlib/stats/strided/dnanmax]: calculate the maximum value of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanmaxabs( N, x, strideX )][@stdlib/stats/strided/dnanmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanmean( N, x, strideX )][@stdlib/stats/strided/dnanmean]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanmeanors( N, x, strideX )][@stdlib/stats/strided/dnanmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation. - [
dnanmeanpn( N, x, strideX )][@stdlib/stats/strided/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using a two-pass error correction algorithm. - [
dnanmeanpw( N, x, strideX )][@stdlib/stats/strided/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaNvalues and using pairwise summation. - [
dnanmeanwd( N, x, strideX )][@stdlib/stats/strided/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoringNaNvalues. - [
dnanmidrange( N, x, strideX )][@stdlib/stats/strided/dnanmidrange]: calculate the mid-range of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanmin( N, x, strideX )][@stdlib/stats/strided/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanminabs( N, x, strideX )][@stdlib/stats/strided/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
dnanmskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dnanmskmidrange]: calculate the mid-range of a double-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
dnanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
dnanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
dnanrange( N, x, strideX )][@stdlib/stats/strided/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoringNaNvalues. - [
dnanstdev( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues. - [
dnanstdevch( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm. - [
dnanstdevpn( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array, ignoringNaNvalues and using a two-pass algorithm. - [
dnanstdevtk( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm. - [
dnanstdevwd( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm. - [
dnanstdevyc( N, correction, x, strideX )][@stdlib/stats/strided/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer. - [
dnanvariance( N, correction, x, strideX )][@stdlib/stats/strided/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues. - [
dnanvariancech( N, correction, x, strideX )][@stdlib/stats/strided/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass trial mean algorithm. - [
dnanvariancepn( N, correction, x, strideX )][@stdlib/stats/strided/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a two-pass algorithm. - [
dnanvariancetk( N, correction, x, strideX )][@stdlib/stats/strided/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass textbook algorithm. - [
dnanvariancewd( N, correction, x, strideX )][@stdlib/stats/strided/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using Welford's algorithm. - [
dnanvarianceyc( N, correction, x, strideX )][@stdlib/stats/strided/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer. - [
drange( N, x, strideX )][@stdlib/stats/strided/drange]: calculate the range of a double-precision floating-point strided array. - [
drangeabs( N, x, strideX )][@stdlib/stats/strided/drangeabs]: compute the range of absolute values of a double-precision floating-point strided array. - [
dsem( N, correction, x, strideX )][@stdlib/stats/strided/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array. - [
dsemch( N, correction, x, strideX )][@stdlib/stats/strided/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [
dsempn( N, correction, x, strideX )][@stdlib/stats/strided/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm. - [
dsemtk( N, correction, x, strideX )][@stdlib/stats/strided/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm. - [
dsemwd( N, correction, x, strideX )][@stdlib/stats/strided/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm. - [
dsemyc( N, correction, x, strideX )][@stdlib/stats/strided/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
dsmean( N, x, strideX )][@stdlib/stats/strided/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result. - [
dsmeanors( N, x, strideX )][@stdlib/stats/strided/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result. - [
dsmeanpn( N, x, strideX )][@stdlib/stats/strided/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result. - [
dsmeanpw( N, x, strideX )][@stdlib/stats/strided/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result. - [
dsmeanwd( N, x, strideX )][@stdlib/stats/strided/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result. - [
dsnanmean( N, x, strideX )][@stdlib/stats/strided/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using extended accumulation, and returning an extended precision result. - [
dsnanmeanors( N, x, strideX )][@stdlib/stats/strided/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result. - [
dsnanmeanpn( N, x, strideX )][@stdlib/stats/strided/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result. - [
dsnanmeanwd( N, x, strideX )][@stdlib/stats/strided/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues, using Welford's algorithm with extended accumulation, and returning an extended precision result. - [
dstdev( N, correction, x, strideX )][@stdlib/stats/strided/dstdev]: calculate the standard deviation of a double-precision floating-point strided array. - [
dstdevch( N, correction, x, strideX )][@stdlib/stats/strided/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [
dstdevpn( N, correction, x, strideX )][@stdlib/stats/strided/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm. - [
dstdevtk( N, correction, x, strideX )][@stdlib/stats/strided/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm. - [
dstdevwd( N, correction, x, strideX )][@stdlib/stats/strided/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm. - [
dstdevyc( N, correction, x, strideX )][@stdlib/stats/strided/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
dsvariance( N, correction, x, strideX )][@stdlib/stats/strided/dsvariance]: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result. - [
dsvariancepn( N, correction, x, strideX )][@stdlib/stats/strided/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result. - [
dvariance( N, correction, x, strideX )][@stdlib/stats/strided/dvariance]: calculate the variance of a double-precision floating-point strided array. - [
dvariancech( N, correction, x, strideX )][@stdlib/stats/strided/dvariancech]: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [
dvariancepn( N, correction, x, strideX )][@stdlib/stats/strided/dvariancepn]: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm. - [
dvariancetk( N, correction, x, strideX )][@stdlib/stats/strided/dvariancetk]: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm. - [
dvariancewd( N, correction, x, strideX )][@stdlib/stats/strided/dvariancewd]: calculate the variance of a double-precision floating-point strided array using Welford's algorithm. - [
dvarianceyc( N, correction, x, strideX )][@stdlib/stats/strided/dvarianceyc]: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
dvarm( N, correction, mean, x, strideX )][@stdlib/stats/strided/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean. - [
dvarmpn( N, correction, mean, x, strideX )][@stdlib/stats/strided/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm. - [
dvarmtk( N, correction, mean, x, strideX )][@stdlib/stats/strided/dvarmtk]: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm. - [
dztest( N, alternative, alpha, mu, sigma, x, strideX, out )][@stdlib/stats/strided/dztest]: compute a one-sample Z-test for a double-precision floating-point strided array. - [
dztest2( NX, NY, alternative, alpha, diff, sigmax, x, strideX, sigmay, y, strideY, out )][@stdlib/stats/strided/dztest2]: compute a two-sample Z-test for two double-precision floating-point strided arrays. - [
maxBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/max-by]: calculate the maximum value of a strided array via a callback function. - [
max( N, x, strideX )][@stdlib/stats/strided/max]: calculate the maximum value of a strided array. - [
maxabs( N, x, strideX )][@stdlib/stats/strided/maxabs]: calculate the maximum absolute value of a strided array. - [
maxsorted( N, x, strideX )][@stdlib/stats/strided/maxsorted]: calculate the maximum value of a sorted strided array. - [
mean( N, x, strideX )][@stdlib/stats/strided/mean]: calculate the arithmetic mean of a strided array. - [
meankbn( N, x, strideX )][@stdlib/stats/strided/meankbn]: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm. - [
meankbn2( N, x, strideX )][@stdlib/stats/strided/meankbn2]: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm. - [
meanors( N, x, strideX )][@stdlib/stats/strided/meanors]: calculate the arithmetic mean of a strided array using ordinary recursive summation. - [
meanpn( N, x, strideX )][@stdlib/stats/strided/meanpn]: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm. - [
meanpw( N, x, strideX )][@stdlib/stats/strided/meanpw]: calculate the arithmetic mean of a strided array using pairwise summation. - [
meanwd( N, x, strideX )][@stdlib/stats/strided/meanwd]: calculate the arithmetic mean of a strided array using Welford's algorithm. - [
mediansorted( N, x, strideX )][@stdlib/stats/strided/mediansorted]: calculate the median value of a sorted strided array. - [
midrangeBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/midrange-by]: calculate the mid-range of a strided array via a callback function. - [
midrange( N, x, strideX )][@stdlib/stats/strided/midrange]: calculate the mid-range of a strided array. - [
minBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/min-by]: calculate the minimum value of a strided array via a callback function. - [
min( N, x, strideX )][@stdlib/stats/strided/min]: calculate the minimum value of a strided array. - [
minabs( N, x, strideX )][@stdlib/stats/strided/minabs]: calculate the minimum absolute value of a strided array. - [
minsorted( N, x, strideX )][@stdlib/stats/strided/minsorted]: calculate the minimum value of a sorted strided array. - [
mskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/mskmax]: calculate the maximum value of a strided array according to a mask. - [
mskmaxabs( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/mskmaxabs]: calculate the maximum absolute value of a strided array according to a mask. - [
mskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/mskmidrange]: calculate the mid-range of a strided array according to a mask. - [
mskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/mskmin]: calculate the minimum value of a strided array according to a mask. - [
mskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/mskrange]: calculate the range of a strided array according to a mask. - [
nanmaxBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/nanmax-by]: calculate the maximum value of a strided array via a callback function, ignoringNaNvalues. - [
nanmax( N, x, strideX )][@stdlib/stats/strided/nanmax]: calculate the maximum value of a strided array, ignoringNaNvalues. - [
nanmaxabs( N, x, strideX )][@stdlib/stats/strided/nanmaxabs]: calculate the maximum absolute value of a strided array, ignoringNaNvalues. - [
nanmean( N, x, strideX )][@stdlib/stats/strided/nanmean]: calculate the arithmetic mean of a strided array, ignoringNaNvalues. - [
nanmeanors( N, x, strideX )][@stdlib/stats/strided/nanmeanors]: calculate the arithmetic mean of a strided array, ignoringNaNvalues and using ordinary recursive summation. - [
nanmeanpn( N, x, strideX )][@stdlib/stats/strided/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoringNaNvalues and using a two-pass error correction algorithm. - [
nanmeanwd( N, x, strideX )][@stdlib/stats/strided/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoringNaNvalues and using Welford's algorithm. - [
nanmidrangeBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/nanmidrange-by]: calculate the mid-range of a strided array via a callback function, ignoringNaNvalues. - [
nanmidrange( N, x, strideX )][@stdlib/stats/strided/nanmidrange]: calculate the mid-range of a strided array, ignoringNaNvalues. - [
nanminBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoringNaNvalues. - [
nanmin( N, x, strideX )][@stdlib/stats/strided/nanmin]: calculate the minimum value of a strided array, ignoringNaNvalues. - [
nanminabs( N, x, strideX )][@stdlib/stats/strided/nanminabs]: calculate the minimum absolute value of a strided array, ignoringNaNvalues. - [
nanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/nanmskmax]: calculate the maximum value of a strided array according to a mask, ignoringNaNvalues. - [
nanmskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/nanmskmidrange]: calculate the mid-range of a strided array according to a mask, ignoringNaNvalues. - [
nanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/nanmskmin]: calculate the minimum value of a strided array according to a mask, ignoringNaNvalues. - [
nanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/nanmskrange]: calculate the range of a strided array according to a mask, ignoringNaNvalues. - [
nanrangeBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/nanrange-by]: calculate the range of a strided array via a callback function, ignoringNaNvalues. - [
nanrange( N, x, strideX )][@stdlib/stats/strided/nanrange]: calculate the range of a strided array, ignoringNaNvalues. - [
nanstdev( N, correction, x, strideX )][@stdlib/stats/strided/nanstdev]: calculate the standard deviation of a strided array ignoringNaNvalues. - [
nanstdevch( N, correction, x, strideX )][@stdlib/stats/strided/nanstdevch]: calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass trial mean algorithm. - [
nanstdevpn( N, correction, x, strideX )][@stdlib/stats/strided/nanstdevpn]: calculate the standard deviation of a strided array ignoringNaNvalues and using a two-pass algorithm. - [
nanstdevtk( N, correction, x, strideX )][@stdlib/stats/strided/nanstdevtk]: calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass textbook algorithm. - [
nanstdevwd( N, correction, x, strideX )][@stdlib/stats/strided/nanstdevwd]: calculate the standard deviation of a strided array ignoringNaNvalues and using Welford's algorithm. - [
nanstdevyc( N, correction, x, strideX )][@stdlib/stats/strided/nanstdevyc]: calculate the standard deviation of a strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer. - [
nanvariance( N, correction, x, strideX )][@stdlib/stats/strided/nanvariance]: calculate the variance of a strided array ignoringNaNvalues. - [
nanvariancech( N, correction, x, strideX )][@stdlib/stats/strided/nanvariancech]: calculate the variance of a strided array ignoringNaNvalues and using a one-pass trial mean algorithm. - [
nanvariancepn( N, correction, x, strideX )][@stdlib/stats/strided/nanvariancepn]: calculate the variance of a strided array ignoringNaNvalues and using a two-pass algorithm. - [
nanvariancetk( N, correction, x, strideX )][@stdlib/stats/strided/nanvariancetk]: calculate the variance of a strided array ignoringNaNvalues and using a one-pass textbook algorithm. - [
nanvariancewd( N, correction, x, strideX )][@stdlib/stats/strided/nanvariancewd]: calculate the variance of a strided array ignoringNaNvalues and using Welford's algorithm. - [
nanvarianceyc( N, correction, x, strideX )][@stdlib/stats/strided/nanvarianceyc]: calculate the variance of a strided array ignoringNaNvalues and using a one-pass algorithm proposed by Youngs and Cramer. - [
rangeBy( N, x, strideX, clbk[, thisArg] )][@stdlib/stats/strided/range-by]: calculate the range of a strided array via a callback function. - [
range( N, x, strideX )][@stdlib/stats/strided/range]: calculate the range of a strided array. - [
rangeabs( N, x, strideX )][@stdlib/stats/strided/rangeabs]: calculate the range of absolute values of a strided array. - [
scovarmtk( N, correction, meanx, x, strideX, meany, y, strideY )][@stdlib/stats/strided/scovarmtk]: calculate the covariance of two single-precision floating-point strided arrays provided known means and using a one-pass textbook algorithm. - [
scumax( N, x, strideX, y, strideY )][@stdlib/stats/strided/scumax]: calculate the cumulative maximum of single-precision floating-point strided array elements. - [
scumaxabs( N, x, strideX, y, strideY )][@stdlib/stats/strided/scumaxabs]: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements. - [
scumin( N, x, strideX, y, strideY )][@stdlib/stats/strided/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements. - [
scuminabs( N, x, strideX, y, strideY )][@stdlib/stats/strided/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements. - [
sdsmean( N, x, strideX )][@stdlib/stats/strided/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation. - [
sdsmeanors( N, x, strideX )][@stdlib/stats/strided/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation. - [
sdsnanmeanors( N, x, strideX )][@stdlib/stats/strided/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation with extended accumulation. - [
smax( N, x, strideX )][@stdlib/stats/strided/smax]: calculate the maximum value of a single-precision floating-point strided array. - [
smaxabs( N, x, strideX )][@stdlib/stats/strided/smaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array. - [
smaxabssorted( N, x, strideX )][@stdlib/stats/strided/smaxabssorted]: calculate the maximum absolute value of a sorted single-precision floating-point strided array. - [
smaxsorted( N, x, stride )][@stdlib/stats/strided/smaxsorted]: calculate the maximum value of a sorted single-precision floating-point strided array. - [
smean( N, x, strideX )][@stdlib/stats/strided/smean]: calculate the arithmetic mean of a single-precision floating-point strided array. - [
smeankbn( N, x, strideX )][@stdlib/stats/strided/smeankbn]: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm. - [
smeankbn2( N, x, strideX )][@stdlib/stats/strided/smeankbn2]: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm. - [
smeanli( N, x, strideX )][@stdlib/stats/strided/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm. - [
smeanlipw( N, x, strideX )][@stdlib/stats/strided/smeanlipw]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation. - [
smeanors( N, x, strideX )][@stdlib/stats/strided/smeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation. - [
smeanpn( N, x, strideX )][@stdlib/stats/strided/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm. - [
smeanpw( N, x, strideX )][@stdlib/stats/strided/smeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation. - [
smeanwd( N, x, strideX )][@stdlib/stats/strided/smeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm. - [
smediansorted( N, x, strideX )][@stdlib/stats/strided/smediansorted]: calculate the median value of a sorted single-precision floating-point strided array. - [
smidrange( N, x, strideX )][@stdlib/stats/strided/smidrange]: calculate the mid-range of a single-precision floating-point strided array. - [
smin( N, x, strideX )][@stdlib/stats/strided/smin]: calculate the minimum value of a single-precision floating-point strided array. - [
sminabs( N, x, strideX )][@stdlib/stats/strided/sminabs]: calculate the minimum absolute value of a single-precision floating-point strided array. - [
sminsorted( N, x, strideX )][@stdlib/stats/strided/sminsorted]: calculate the minimum value of a sorted single-precision floating-point strided array. - [
smskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/smskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask. - [
smskmaxabs( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/smskmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array according to a mask. - [
smskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/smskmidrange]: calculate the mid-range of a single-precision floating-point strided array according to a mask. - [
smskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/smskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask. - [
smskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/smskrange]: calculate the range of a single-precision floating-point strided array according to a mask. - [
snanmax( N, x, strideX )][@stdlib/stats/strided/snanmax]: calculate the maximum value of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanmaxabs( N, x, strideX )][@stdlib/stats/strided/snanmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanmean( N, x, strideX )][@stdlib/stats/strided/snanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanmeanors( N, x, strideX )][@stdlib/stats/strided/snanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using ordinary recursive summation. - [
snanmeanpn( N, x, strideX )][@stdlib/stats/strided/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using a two-pass error correction algorithm. - [
snanmeanwd( N, x, strideX )][@stdlib/stats/strided/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaNvalues and using Welford's algorithm. - [
snanmidrange( N, x, strideX )][@stdlib/stats/strided/snanmidrange]: calculate the mid-range of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanmin( N, x, strideX )][@stdlib/stats/strided/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanminabs( N, x, strideX )][@stdlib/stats/strided/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoringNaNvalues. - [
snanmskmax( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
snanmskmidrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/snanmskmidrange]: calculate the mid-range of a single-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
snanmskmin( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/snanmskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
snanmskrange( N, x, strideX, mask, strideMask )][@stdlib/stats/strided/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoringNaNvalues. - [
snanrange( N, x, strideX )][@stdlib/stats/strided/snanrange]: calculate the range of a single-precision floating-point strided array, ignoringNaNvalues. - [
srange( N, x, strideX )][@stdlib/stats/strided/srange]: calculate the range of a single-precision floating-point strided array. - [
srangeabs( N, x, strideX )][@stdlib/stats/strided/srangeabs]: compute the range of absolute values of a single-precision floating-point strided array. - [
sstdev( N, correction, x, strideX )][@stdlib/stats/strided/sstdev]: calculate the standard deviation of a single-precision floating-point strided array. - [
sstdevch( N, correction, x, strideX )][@stdlib/stats/strided/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm. - [
sstdevpn( N, correction, x, strideX )][@stdlib/stats/strided/sstdevpn]: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm. - [
sstdevtk( N, correction, x, strideX )][@stdlib/stats/strided/sstdevtk]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm. - [
sstdevwd( N, correction, x, strideX )][@stdlib/stats/strided/sstdevwd]: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm. - [
sstdevyc( N, correction, x, strideX )][@stdlib/stats/strided/sstdevyc]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
stdev( N, correction, x, strideX )][@stdlib/stats/strided/stdev]: calculate the standard deviation of a strided array. - [
stdevch( N, correction, x, strideX )][@stdlib/stats/strided/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm. - [
stdevpn( N, correction, x, strideX )][@stdlib/stats/strided/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm. - [
stdevtk( N, correction, x, strideX )][@stdlib/stats/strided/stdevtk]: calculate the standard deviation of a strided array using a one-pass textbook algorithm. - [
stdevwd( N, correction, x, strideX )][@stdlib/stats/strided/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm. - [
stdevyc( N, correction, x, strideX )][@stdlib/stats/strided/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
svariance( N, correction, x, strideX )][@stdlib/stats/strided/svariance]: calculate the variance of a single-precision floating-point strided array. - [
svariancech( N, correction, x, strideX )][@stdlib/stats/strided/svariancech]: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm. - [
svariancepn( N, correction, x, strideX )][@stdlib/stats/strided/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm. - [
svariancetk( N, correction, x, strideX )][@stdlib/stats/strided/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm. - [
svariancewd( N, correction, x, strideX )][@stdlib/stats/strided/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm. - [
svarianceyc( N, correction, x, strideX )][@stdlib/stats/strided/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [
sztest( N, alternative, alpha, mu, sigma, x, strideX, out )][@stdlib/stats/strided/sztest]: compute a one-sample Z-test for a single-precision floating-point strided array. - [
sztest2( NX, NY, alternative, alpha, diff, sigmax, x, strideX, sigmay, y, strideY, out )][@stdlib/stats/strided/sztest2]: compute a two-sample Z-test for two single-precision floating-point strided arrays. - [
variance( N, correction, x, strideX )][@stdlib/stats/strided/variance]: calculate the variance of a strided array. - [
variancech( N, correction, x, strideX )][@stdlib/stats/strided/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm. - [
variancepn( N, correction, x, strideX )][@stdlib/stats/strided/variancepn]: calculate the variance of a strided array using a two-pass algorithm. - [
variancetk( N, correction, x, strideX )][@stdlib/stats/strided/variancetk]: calculate the variance of a strided array using a one-pass textbook algorithm. - [
variancewd( N, correction, x, strideX )][@stdlib/stats/strided/variancewd]: calculate the variance of a strided array using Welford's algorithm. - [
varianceyc( N, correction, x, strideX )][@stdlib/stats/strided/varianceyc]<span class="delim
