@stdlib/stats-strided-dztest
v0.1.1
Published
Compute a one-sample Z-test for a double-precision floating-point strided array.
Readme
dztest
Compute a one-sample Z-test for a double-precision floating-point strided array.
A Z-test commonly refers to a one-sample location test which compares the mean of a set of measurements X to a given constant when the standard deviation is known. A Z-test supports testing three different null hypotheses H0:
H0: μ ≥ μ0versus the alternative hypothesisH1: μ < μ0.H0: μ ≤ μ0versus the alternative hypothesisH1: μ > μ0.H0: μ = μ0versus the alternative hypothesisH1: μ ≠ μ0.
Installation
npm install @stdlib/stats-strided-dztestUsage
var dztest = require( '@stdlib/stats-strided-dztest' );dztest( N, alternative, alpha, mu, sigma, x, strideX, out )
Computes a one-sample Z-test for a double-precision floating-point strided array.
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var results = new Results();
var out = dztest( x.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, results );
// returns {...}
var bool = ( out === results );
// returns trueThe function has the following parameters:
- N: number of indexed elements.
- alternative: alternative hypothesis.
- alpha: significance level.
- mu: mean value under the null hypothesis.
- sigma: known standard deviation.
- x: input
Float64Array. - strideX: stride length for
x. - out: output results object.
The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to perform a one-sample Z-test over every other element in x,
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 0.0, 4.0, 0.0, 6.0, 0.0, 6.0, 0.0, 5.0, 0.0 ] );
var results = new Results();
var out = dztest( 5, 'two-sided', 0.05, 0.0, 1.0, x, 2, results );
// returns {...}
var bool = ( out === results );
// returns trueNote that indexing is relative to the first index. To introduce an offset, use typed array views.
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 0.0, 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var results = new Results();
var out = dztest( x1.length, 'two-sided', 0.05, 0.0, 1.0, x1, 1, results );
// returns {...}
var bool = ( out === results );
// returns truedztest.ndarray( N, alternative, alpha, mu, sigma, x, strideX, offsetX, out )
Computes a one-sample Z-test for a double-precision floating-point strided array using alternative indexing semantics.
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var results = new Results();
var out = dztest.ndarray( x.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, 0, results );
// returns {...}
var bool = ( out === results );
// returns trueThe function has the following additional parameters:
- offsetX: starting index for
x.
While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to perform a one-sample Z-test over every other element in x starting from the second element
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 0.0, 4.0, 0.0, 4.0, 0.0, 6.0, 0.0, 6.0, 0.0, 5.0 ] );
var results = new Results();
var out = dztest.ndarray( 5, 'two-sided', 0.05, 0.0, 1.0, x, 2, 1, results );
// returns {...}
var bool = ( out === results );
// returns trueNotes
- As a general rule of thumb, a Z-test is most reliable when
N >= 50. For smaller sample sizes or when the standard deviation is unknown, prefer a t-test.
Examples
var Results = require( '@stdlib/stats-base-ztest-one-sample-results-float64' );
var normal = require( '@stdlib/random-array-normal' );
var dztest = require( '@stdlib/stats-strided-dztest' );
var x = normal( 1000, 0.0, 1.0, {
'dtype': 'float64'
});
var results = new Results();
var out = dztest( x.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, results );
// returns {...}
console.log( out.toString() );C APIs
Usage
#include "stdlib/stats/strided/dztest.h"stdlib_strided_dztest( N, alternative, alpha, mu, sigma, *X, strideX, *results )
Computes a one-sample Z-test for a double-precision floating-point strided array.
#include "stdlib/stats/base/ztest/one-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
struct stdlib_stats_ztest_one_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.sd = 0.0
};
const double x[] = { 4.0, 4.0, 6.0, 6.0, 5.0 };
stdlib_strided_dztest( 5, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 0.0, 1.0, x, 1, &results );The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - alternative:
[in] enum STDLIB_STATS_ZTEST_ALTERNATIVEalternative hypothesis. - alpha:
[in] doublesignificance level. - mu:
[in] doublevalue of the mean under the null hypothesis. - sigma
[in] doubleknown standard deviation. - X:
[in] double*input array. - strideX:
[in] CBLAS_INTstride length forX. - results:
[out] struct stdlib_stats_ztest_one_sample_results_float64*output results object.
void stdlib_strided_dztest( const CBLAS_INT N, const enum STDLIB_STATS_ZTEST_ALTERNATIVE alternative, const double alpha, const double mu, const double sigma, const double *X, const CBLAS_INT strideX, struct stdlib_stats_ztest_one_sample_float64_results *results );stdlib_strided_dztest_ndarray( N, alternative, alpha, mu, sigma, *X, strideX, offsetX, *results )
Computes a one-sample Z-test for a double-precision floating-point strided array using alternative indexing semantics.
#include "stdlib/stats/base/ztest/one-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
struct stdlib_stats_ztest_one_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.sd = 0.0
};
const double x[] = { 4.0, 4.0, 6.0, 6.0, 5.0 };
stdlib_strided_dztest_ndarray( 5, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 0.0, 1.0, x, 1, 0, &results );The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - alternative:
[in] enum STDLIB_STATS_ZTEST_ALTERNATIVEalternative hypothesis. - alpha:
[in] doublesignificance level. - mu:
[in] doublevalue of the mean under the null hypothesis. - sigma
[in] doubleknown standard deviation. - X:
[in] double*input array. - strideX:
[in] CBLAS_INTstride length forX. - offsetX:
[in] CBLAS_INTstarting index forX. - results:
[out] struct stdlib_stats_ztest_one_sample_results_float64*output results object.
void stdlib_strided_dztest_ndarray( const CBLAS_INT N, const enum STDLIB_STATS_ZTEST_ALTERNATIVE alternative, const double alpha, const double mu, const double sigma, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, struct stdlib_stats_ztest_one_sample_float64_results *results );Examples
#include "stdlib/stats/strided/dztest.h"
#include "stdlib/stats/base/ztest/one-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
#include <stdbool.h>
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Specify the number of elements:
const int N = 4;
// Specify the stride length:
const int strideX = 2;
// Initialize a results object:
struct stdlib_stats_ztest_one_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.sd = 0.0
};
// Compute a Z-test:
stdlib_strided_dztest( N, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 5.0, 3.0, x, strideX, &results );
// Print the result:
printf( "Statistic: %lf\n", results.statistic );
printf( "Null hypothesis was %s\n", ( results.rejected ) ? "rejected" : "not rejected" );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
