@stdlib/stats-strided-mskmidrange
v0.1.1
Published
Calculate the mid-range of a strided array according to a mask.
Downloads
232
Readme
mskmidrange
Calculate the mid-range of a strided array according to a mask.
The mid-range, or mid-extreme, is the arithmetic mean of the maximum and minimum values in a data set. The measure is the midpoint of the range and a measure of central tendency.
Installation
npm install @stdlib/stats-strided-mskmidrangeUsage
var mskmidrange = require( '@stdlib/stats-strided-mskmidrange' );mskmidrange( N, x, strideX, mask, strideMask )
Computes the mid-range of a strided array according to a mask.
var x = [ 1.0, -2.0, 4.0, 2.0 ];
var mask = [ 0, 0, 1, 0 ];
var v = mskmidrange( x.length, x, 1, mask, 1 );
// returns 0.0The function has the following parameters:
- N: number of indexed elements.
- x: input
Arrayortyped array. - strideX: stride length for
x. - mask: mask
Arrayortyped array. If amaskarray element is0, the corresponding element inxis considered valid and included in computation. If amaskarray element is1, the corresponding element inxis considered invalid/missing and excluded from computation. - strideMask: stride length for
mask.
The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the mid-range of every other element in x,
var x = [ 1.0, 2.0, -7.0, -2.0, 4.0, 3.0, 5.0, 6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var v = mskmidrange( 4, x, 2, mask, 2 );
// returns -1.5Note that indexing is relative to the first index. To introduce offsets, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = mskmidrange( 4, x1, 2, mask1, 2 );
// returns 1.0mskmidrange.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )
Computes the mid-range of a strided array according to a mask and using alternative indexing semantics.
var x = [ 1.0, -2.0, 4.0, 2.0 ];
var mask = [ 0, 0, 1, 0 ];
var v = mskmidrange.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns 0.0The function has the following additional parameters:
- offsetX: starting index for
x. - offsetMask: starting index for
mask.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the mid-range of every other value in x starting from the second value
var x = [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var v = mskmidrange.ndarray( 4, x, 2, 1, mask, 2, 1 );
// returns 1.0Notes
- If
N <= 0, both functions returnNaN. - Depending on the environment, the typed versions (
dmskmidrange,smskmidrange, etc.) are likely to be significantly more performant. - Both functions support array-like objects having getter and setter accessors for array element access (e.g.,
@stdlib/array-base/accessor).
Examples
var uniform = require( '@stdlib/random-array-uniform' );
var bernoulli = require( '@stdlib/random-array-bernoulli' );
var mskmidrange = require( '@stdlib/stats-strided-mskmidrange' );
var x = uniform( 10, -50.0, 50.0, {
'dtype': 'float64'
});
console.log( x );
var mask = bernoulli( x.length, 0.2, {
'dtype': 'uint8'
});
console.log( mask );
var v = mskmidrange( x.length, x, 1, mask, 1 );
console.log( v );Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
