@stdlib/stats-strided-scumax
v0.1.1
Published
Calculate the cumulative maximum of single-precision floating-point strided array elements.
Downloads
367
Readme
scumax
Calculate the cumulative maximum of single-precision floating-point strided array elements.
Installation
npm install @stdlib/stats-strided-scumaxUsage
var scumax = require( '@stdlib/stats-strided-scumax' );scumax( N, x, strideX, y, strideY )
Computes the cumulative maximum of single-precision floating-point strided array elements.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );
scumax( x.length, x, 1, y, 1 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array. - strideX: stride length for
x. - y: output
Float32Array. - strideY: stride length for
y.
The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative maximum of every other element in x,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float32Array( x.length );
var v = scumax( 4, x, 2, y, 1 );
// y => <Float32Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( x0.length );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
scumax( 4, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]scumax.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float32Array( x.length );
scumax.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 1.0, 1.0, 2.0 ]The function has the following additional parameters:
- offsetX: starting index for
x. - offsetY: starting index for
y.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the cumulative maximum of every other element in x starting from the second element and to store in the last N elements of y starting from the last element
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float32Array( x.length );
scumax.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 1.0, 1.0 ]Notes
- If
N <= 0, both functions returnyunchanged.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var Float32Array = require( '@stdlib/array-float32' );
var scumax = require( '@stdlib/stats-strided-scumax' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float32'
});
console.log( x );
var y = new Float32Array( x.length );
console.log( y );
scumax( x.length, x, 1, y, -1 );
console.log( y );C APIs
Usage
#include "stdlib/stats/strided/scumax.h"stdlib_strided_scumax( N, *X, strideX, *Y, strideY )
Computes the cumulative maximum of single-precision floating-point strided array elements.
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
stdlib_strided_scumax( 4, x, 2, y, -2 );The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] float*input array. - strideX:
[in] CBLAS_INTstride length forX. - Y:
[out] float*output array. - strideY:
[in] CBLAS_INTstride length forY.
void stdlib_strided_scumax( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, float *Y, const CBLAS_INT strideY );stdlib_strided_scumax_ndarray( N, *X, strideX, offsetX, *Y, strideY, offsetY )
Computes the cumulative maximum of single-precision floating-point strided array elements using alternative indexing semantics.
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
stdlib_strided_scumax_ndarray( 4, x, 2, 0, y, -2, 0 );The function accepts the following arguments:
- N:
[in] CBLAS_INTnumber of indexed elements. - X:
[in] float*input array. - strideX:
[in] CBLAS_INTstride length forX. - offsetX:
[in] CBLAS_INTstarting index forX. - Y:
[out] float*output array. - strideY:
[in] CBLAS_INTstride length forY. - offsetY:
[in] CBLAS_INTstarting index forY.
void stdlib_strided_scumax_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, float *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );Examples
#include "stdlib/stats/strided/scumax.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const float x[] = { 1.0f, 2.0f, -3.0f, 4.0f, -5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 2;
const int strideY = -2;
// Compute the cumulative maximum:
stdlib_strided_scumax( N, x, strideX, y, strideY );
// Print the result:
for ( int i = 0; i < 8; i++ ) {
printf( "y[ %d ] = %f\n", i, y[ i ] );
}
}See Also
@stdlib/stats-base/cumax: calculate the cumulative maximum of a strided array.@stdlib/stats-strided/dcumax: calculate the cumulative maximum of double-precision floating-point strided array elements.@stdlib/stats-strided/scumin: calculate the cumulative minimum of single-precision floating-point strided array elements.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2026. The Stdlib Authors.
