npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@tamim.jabr/tokenizer

v1.0.7

Published

It is a package to help you detect tokens in strings based on the grammar you choose

Readme

Tokenizer

It is a package to help you detect tokens in strings based on the grammar you choose

How to install it?

npm i @tamim.jabr/tokenizer

How to import it?

import tokenizer from '@tamim.jabr/tokenizer'

How to use it?

A tokenizer is created by sending the grammar object

import tokenizer from '@tamim.jabr/tokenizer'

const {
  Tokenizer,
  Grammar,
  WordAndDotGrammar,
  ArithmeticGrammar,
  ExclamationGrammar,
  MaximalMunchGrammar
} = tokenizer

const grammar = new WordAndDotGrammar()

const newTokenizer = new Tokenizer(grammar, 'hello World .')

newTokenizer.getActiveToken()
// expected : { tokenType: 'WORD', tokenValue: 'hello' }

newTokenizer.moveActiveTokenToNext()
newTokenizer.getActiveToken()
// expected : { tokenType: 'WORD', tokenValue: 'World' }

newTokenizer.moveActiveTokenToNext()
newTokenizer.getActiveToken()
// expected : { tokenType: 'DOT', tokenValue: '.' }
newTokenizer.hasNext()
// expected : true

newTokenizer.moveActiveTokenToNext()
newTokenizer.getActiveToken()
// expected : { tokenType: 'END', tokenValue: '' }
newTokenizer.hasNext()
// expected : false
newTokenizer.moveActiveTokenToNext()
// expected : Error: Invalid index for active token

Available Grammars:

  1. Word and dot grammar: detects words (even words including:åäöÅÄÖ) and dots using the following regex:
 [
    {
      tokenType: 'WORD',
      regex: /^[\w|åäöÅÄÖ]+/
    },
    {
      tokenType: 'DOT',
      regex: /^\./
    }
  ]
const wordAndDotGrammar = new WordAndDotGrammar()
  1. Arithmetic grammar: detects arithmetic expressions using the following regex:
 [
    {
      tokenType: 'NUMBER',
      regex: /^[0-9]+(\.([0-9])+)?/
    },
    {
      tokenType: 'ADD',
      regex: /^[+]/
    },
    {
      tokenType: 'MUL',
      regex: /^[*]/
    },
    {
      tokenType: 'DIV',
      regex: /^[/]/
    },
    {
      tokenType: 'SUB',
      regex: /^[-]/
    },
    {
      tokenType: 'LEFT_PARENTHESES',
      regex: /^[\(]/
    },
    {
      tokenType: 'RIGHT_PARENTHESES',
      regex: /^[\)]/
    }
  ]
const arithmeticGrammar = new ArithmeticGrammar()
  1. Maximal munch grammar: detects Numbers and distinguishes between Float and Integer using the following regex:
[
    {
      tokenType: 'INTEGER',
      regex: /^[0-9]+/
    },
    {
      tokenType: 'FLOAT',
      regex: /^[0-9]+\.[0-9]+/
    }
  ]
const maximalMunchGrammar = new MaximalMunchGrammar()
  1. Exclamation grammar: detects words (even words including:åäöÅÄÖ) and exclamation marks using the following regex:
 [
    {
      tokenType: 'WORD',
      regex: /^[\w|åäöÅÄÖ]+/
    },
    {
      tokenType: 'EXCLAMATION',
      regex: /^\!/
    }
  ]
const exclamationGrammar = new ExclamationGrammar()

Use your own grammar:

import tokenizer from '@tamim.jabr/tokenizer'

const {
  Tokenizer,
  Grammar
} = tokenizer


const regexAndTypesList = [
  {
    tokenType: 'WORD_WITHOUT_NUMBERS',
    regex: /^[a-zA-Z]+/
  },
  {
    tokenType: 'DOLLAR_SIGN',
    regex: /^\$+/
  }
] 

const ownGrammar = new Grammar(regexAndTypesList)

const testString = '$ test string'
const newTokenizer = new Tokenizer(ownGrammar, testString)

newTokenizer.getActiveToken()
// expected:{ tokenType: 'DOLLAR_SIGN', tokenValue: '$' }

Public Interface (Method to use):

  1. getActiveToken() : return the current active token
  2. moveActiveTokenToNext(): move the active token to next token if exists
  3. moveActiveTokenToPrevious() : move the active token to previous token if exists
  4. hasNext(): return a boolean indicating if there is a token after the current active token or not. !notice that the token of type "END" is a valid token and you will get true if you invoke the method when the current token is before "END"

Lexical Errors:

Lexical Errors happens when you send string to the tokenizer that have a part that the chosen grammar doesn't include in its regex list. You get the lexical error when you first try to move the acitve token to it or when you get the acitve token when the lexical error exists in the first token.

const arithmeticGrammar = new Grammar.ArithmeticGrammar()
const newTokenizer = new Tokenizer(arithmeticGrammar, '4 hej + 2')
newTokenizer.moveActiveTokenToNext()
// expected: LexicalError: No lexical element matches "hej + 2"