@techdebtgpt/archdoc-generator
v0.3.36
Published
AI-powered architecture documentation generator with RAG, hybrid retrieval (semantic + structural), and multi-agent workflows using LangChain
Keywords
Readme
🏗️ ArchDoc Generator
🤖 AI-powered architecture documentation generator Powerful CLI tool for generating comprehensive architecture documentation automatically
ArchDoc Generator is an intelligent tool that analyzes your codebase and generates comprehensive, accurate architectural documentation automatically. It supports any programming language and uses AI-powered agents to understand your project structure, dependencies, patterns, security, and data flows.
📋 Table of Contents
- Features
- Quick Start
- MCP Integration
- Search Strategy Performance
- CLI Usage
- Programmatic Usage
- Configuration
- What Gets Generated
- Available Agents
- Architecture Highlights
- Supported Languages
- Future Work & Roadmap
- Common Questions
- Contributing
- License
✨ Features
- 🤖 8 Specialized AI Agents: File Structure, Dependencies, Patterns, Flows, Schemas, Architecture, Security, and Repository KPI (NEW!).
- 🔍 RAG-Powered Queries: Query your architecture docs with natural language using FREE local embeddings.
- 📊 Repository Health Dashboard: LLM-powered KPI analysis with actionable insights on code quality, testing, architecture health, and technical debt.
- 🔍 RAG Vector Search + Hybrid Retrieval: Semantic similarity search (FREE local TF-IDF or cloud providers) combined with dependency graph analysis - finds files by meaning AND structure. See docs →
- ⚡ Generation Performance Metrics: Track agent execution times, token usage, costs, and confidence scores in metadata.
- 🌍 17 Languages Out-of-the-Box: TypeScript, Python, Java, Go, C#, C/C++, Kotlin, PHP, Ruby, Rust, Scala, Swift, CSS, HTML, JSON, XML, Flex/ActionScript.
- 🧠 AI-Powered: Uses LangChain with Claude 4.5, OpenAI o1/GPT-4o, Gemini 2.5, or Grok 3.
- 📚 Comprehensive Analysis: Structure, dependencies, patterns, flows, schemas, security, and executive-level KPIs.
- 📝 Markdown Output: Clean, version-controllable documentation with smart navigation.
- 🔄 Iterative Refinement: Self-improving analysis with quality checks and gap detection.
- 🎨 Customizable: Prompt-based agent selection and configuration.
- 📊 LangSmith Tracing: Full observability of AI workflows with detailed token tracking.
- 🔒 Security Analysis: Vulnerability detection, authentication review, and crypto analysis.
- ➕ Extensible: Add support for any language via configuration—no code changes required.
🚀 Quick Start
Installation
# Using npm
npm install -g @techdebtgpt/archdoc-generator
# Using yarn
yarn global add @techdebtgpt/archdoc-generator
# Using pnpm
pnpm add -g @techdebtgpt/archdoc-generatorInteractive Setup (Recommended)
Run the interactive configuration wizard:
archdoc config --initThis will:
- Prompt you to choose an LLM provider (Anthropic/OpenAI/Google).
- Ask for your API key.
- Create
.archdoc.config.jsonwith your configuration. - Validate your setup.
Basic Usage
# Analyze current directory
archdoc analyze
# Analyze specific project
archdoc analyze /path/to/your/project
# Custom output location
archdoc analyze --output ./docs
# Verbose output for debugging
archdoc analyze --verboseFor complete CLI options and advanced usage, see CLI Usage section below.
🔄 MCP Integration
Model Context Protocol (MCP) allows AI assistants to access ArchDoc tools directly. Use ArchDoc in:
- Cursor - AI code editor
- Claude Code - Claude's code tool
- VS Code + GitHub Copilot
- Claude Desktop - Claude's desktop application
Quick Setup
# Configure ArchDoc
archdoc config --init
# Set up for your client (choose one)
archdoc setup-mcp cursor # For Cursor
archdoc setup-mcp claude-code # For Claude Code
archdoc setup-mcp vscode # For VS Code + Copilot
archdoc setup-mcp claude-desktop # For Claude Desktop
# Restart your AI client and start using ArchDoc!Example Uses
"Use archdoc to generate documentation for this project"
"Query the architecture: What authentication system is used?"
"Analyze dependencies and get recommendations"
"Check if this file follows our architecture"👉 See docs/MCP-SETUP.md for detailed setup instructions and advanced features.
📊 Vector Search & Embeddings Performance
We benchmarked 6 configurations (including OpenAI embeddings) on a real-world 6,187-file NestJS project. Graph + Local embeddings is the clear winner!
Quick Comparison:
| Configuration | Speed | Cost | Accuracy | Winner? | | -------------------- | --------------- | ------------ | ------------ | ---------- | | Graph + Local ⭐ | 6.1 min ⚡ | $0.08 💰 | 84.8% 🎯 | YES ✅ | | Hybrid + Local | 6.4 min | $0.09 | 84.3% | Good | | Smart + Local | 6.3 min | $0.08 | 84.6% | Good | | Keyword-only | 7.3 min | $0.09 | 84.6% | Fallback | | OpenAI ❌ | 11.7 min ⚠️ | $0.29 ⚠️ | 82.9% ⚠️ | NO |
Key Findings:
- ✅ Graph + Local: Fastest, cheapest, most accurate (best overall)
- ❌ OpenAI: 92% slower, 3.4x more expensive, 1.9% less accurate (NOT recommended)
- 🆓 Local embeddings (free) outperform OpenAI embeddings (paid) for code analysis
📖 Complete Analysis: See Search Strategy Benchmark for:
- Per-agent clarity scores (8 agents × 6 configurations)
- Why Graph + Local won (structural > semantic for code)
- Why OpenAI underperformed (8192 token limit, context loss, batching overhead)
- Configuration examples for all use cases
- Memory usage and technical deep-dive
Also see: Vector Search Guide - Complete guide to vector search with integrated recommendations
� CLI Usage
Available Commands
| Command | Description | Example |
| -------------------------- | ------------------------------------ | ----------------------------------------- |
| archdoc help | Show comprehensive help | archdoc help |
| archdoc analyze | Generate comprehensive documentation | archdoc analyze /path/to/project |
| archdoc analyze --c4 | Generate C4 architecture model | archdoc analyze --c4 |
| archdoc config --init | Interactive configuration setup | archdoc config --init |
| archdoc config --list | Show current configuration | archdoc config --list |
| archdoc export | Export docs to different formats | archdoc export .arch-docs --format html |
| archdoc setup-mcp <client> | Set up MCP for AI client | archdoc setup-mcp cursor |
💡 Tip: Run
archdoc helpfor a comprehensive guide with examples, configuration options, and common workflows.
Documentation Generation
# Analyze current directory
archdoc analyze
# Analyze specific project
archdoc analyze /path/to/your/project
# Custom output location
archdoc analyze --output ./docs
# Enhanced analysis with user focus (runs all agents with extra attention to specified topics)
archdoc analyze --prompt "security vulnerabilities and authentication patterns"
archdoc analyze --prompt "database schema design and API architecture"
# Analysis depth modes
archdoc analyze --depth quick # Fast, less detailed (2 iterations, 70% threshold)
archdoc analyze --depth normal # Balanced (5 iterations, 80% threshold) - default
archdoc analyze --depth deep # Thorough, most detailed (10 iterations, 90% threshold)
# Disable iterative refinement for faster results
archdoc analyze --no-refinement
# Verbose output for debugging
archdoc analyze --verboseC4 Architecture Model Generation
The C4 orchestrator now supports all advanced features from documentation generation, including:
- 🔍 Vector Search: Semantic file retrieval with local/OpenAI/Google embeddings
- 📊 Dependency Graph: Built-in import and module analysis
- 💰 Cost Tracking: Real-time token and cost monitoring with budget limits
- ⚡ LangSmith Tracing: Full observability with custom run names
- 🎯 Agent Skip Logic: Automatically skips agents with no relevant data
# Generate C4 model for current directory
archdoc analyze --c4
# Generate C4 model with vector search (uses config settings)
archdoc analyze --c4
# Generate C4 model for specific project
archdoc analyze /path/to/project --c4
# Custom output location for C4 model
archdoc analyze --c4 --output ./architecture-docs
# C4 model with verbose output and cost limit
archdoc analyze --c4 --verbose --max-cost 1.0
# Quick analysis (1 question per level, fastest)
archdoc analyze --c4 --depth quick
# Deep analysis (4 questions per level, comprehensive)
archdoc analyze --c4 --depth deepNote: Vector search mode is configured in .archdoc.config.json via the searchMode.mode setting. The C4 orchestrator will automatically use your configured search mode (vector or keyword) and embeddings provider.
Configuration Management
# Interactive configuration wizard (recommended for first-time setup)
archdoc config --init
# List current configuration
archdoc config --list
# Get specific configuration value
archdoc config --get llmProvider
archdoc config --get anthropicApiKey
# Set configuration value
archdoc config --set llmProvider=anthropic
archdoc config --set anthropicApiKey=your-api-key
# Reset configuration to defaults
archdoc config --resetExport and Format Options
# Single-file output (default: multi-file)
archdoc analyze --single-file
# Export as JSON
archdoc analyze --single-file --format json
# Export as HTML
archdoc analyze --single-file --format html
# Export as Markdown (default)
archdoc analyze --single-file --format markdown
# Export existing documentation to different formats
archdoc export .arch-docs --format html --output ./docs.html
archdoc export .arch-docs --format json --output ./docs.json
archdoc export .arch-docs --format confluence --output ./confluence.md
# Export with custom template
archdoc export .arch-docs --format html --template ./my-template.html --output ./custom-docs.htmlVector Search & Hybrid Retrieval
# Vector search with local embeddings (FREE, default)
archdoc analyze --search-mode vector
# Keyword search (faster, simpler)
archdoc analyze --search-mode keyword
# Hybrid retrieval (semantic + structural)
archdoc analyze --search-mode vector --retrieval-strategy hybrid
# Configure in .archdoc.config.json for persistence:
{
"searchMode": {
"mode": "vector",
"embeddingsProvider": "local",
"strategy": "hybrid",
"vectorWeight": 0.6,
"graphWeight": 0.4
}
}
# See docs/VECTOR_SEARCH.md for complete documentationWhat Files Are Excluded?
Both File Scanner and Vector Search automatically exclude common build/dependency folders (language-agnostic):
Default Exclusions (applies to all languages):
- Dependencies:
node_modules/,vendor/,target/,packages/,bower_components/ - Build outputs:
dist/,build/,out/,bin/,obj/,target/ - Test files:
.test.,.spec.,__tests__/,test_,*_test.* - Version control:
.git/,.svn/,.hg/ - Generated code: Coverage reports, logs, OS files (
.DS_Store,Thumbs.db)
Gitignore Support:
- Automatically honors
.gitignorepatterns (default:respectGitignore: true) - Works with all languages (not just JavaScript/Node.js)
Customize Exclusions in .archdoc.config.json:
{
"scan": {
"excludePatterns": [
"**/node_modules/**", // JavaScript/TypeScript
"**/vendor/**", // PHP, Go
"**/target/**", // Java, Rust
"**/venv/**", // Python virtual env
"**/my-custom-folder/**" // Your own exclusions
],
"respectGitignore": true // Honor .gitignore (default: true)
}
}Example: On a 6,187-file NestJS project, vector search processes ~889 source files (14%) - focusing on actual code, not dependencies.
Advanced Usage
# Incremental updates (preserves existing docs, adds new analysis)
archdoc analyze --prompt "new feature area to document"
# (Automatically detects existing docs and runs in incremental mode)
# Full regeneration even if docs exist
archdoc analyze --clean
# Specify LLM provider and model
archdoc analyze --provider anthropic --model claude-sonnet-4-5-20250929
archdoc analyze --provider openai --model gpt-4o
archdoc analyze --provider google --model gemini-2.0-flash-exp
# Budget control (halt if cost exceeds limit)
archdoc analyze --max-cost 10.0 # Stop if cost exceeds $10
# Custom refinement settings
archdoc analyze --refinement-iterations 10 --refinement-threshold 90 --refinement-improvement 15CLI Options Reference
archdoc analyze [path] [options]Options:
| Option | Description | Default |
| ----------------------------- | -------------------------------------------------------------- | ------------ |
| --output <dir> | Output directory | .arch-docs |
| --c4 | Generate C4 architecture model (Context/Containers/Components) | false |
| --prompt <text> | Enhance analysis with focus area (all agents still run) | |
| --depth <level> | Analysis depth: quick, normal, deep | normal |
| --provider <name> | LLM provider: anthropic, openai, xai, google | |
| --model <name> | Specific model to use | |
| --refinement | Enable iterative refinement | true |
| --refinement-iterations <n> | Max refinement iterations | 5 |
| --refinement-threshold <n> | Clarity threshold % | 80 |
| --no-clean | Don't clear output directory | |
| --verbose | Show detailed progress | |
C4 Model Generation
Generate structured C4 architecture diagrams with PlantUML output:
# Generate C4 model
archdoc analyze --c4
# Generate for specific project
archdoc analyze /path/to/project --c4 --output ./architecture
# Output includes:
# - c4-model.json (structured data)
# - context.puml (system context diagram)
# - containers.puml (container diagram)
# - components.puml (component diagram)🔧 Programmatic Usage
Use the library in your Node.js applications:
Standard Documentation
import {
DocumentationOrchestrator,
AgentRegistry,
FileSystemScanner,
} from '@techdebtgpt/archdoc-generator';
// Setup registry with agents
const registry = new AgentRegistry();
const scanner = new FileSystemScanner();
const orchestrator = new DocumentationOrchestrator(registry, scanner);
// Generate documentation
const docs = await orchestrator.generateDocumentation('/path/to/project', {
maxTokens: 100000,
parallel: true,
iterativeRefinement: {
enabled: true,
maxIterations: 5,
clarityThreshold: 80,
},
});
console.log('Generated:', docs.summary);C4 Architecture Model
import {
C4ModelOrchestrator,
AgentRegistry,
FileSystemScanner,
} from '@techdebtgpt/archdoc-generator';
// Setup registry with agents
const registry = new AgentRegistry();
const scanner = new FileSystemScanner();
const orchestrator = new C4ModelOrchestrator(registry, scanner);
// Generate C4 model
const result = await orchestrator.generateC4Model('/path/to/project');
console.log('C4 Context:', result.c4Model.context);
console.log('Containers:', result.c4Model.containers);
console.log('Components:', result.c4Model.components);
// PlantUML diagrams available in result.plantUMLModelSee the API Reference for complete programmatic documentation.
⚙️ Configuration
Environment Variables
| Variable | Description |
| ---------------------- | -------------------------------------------------- |
| ANTHROPIC_API_KEY | Anthropic Claude API key |
| OPENAI_API_KEY | OpenAI GPT API key |
| GOOGLE_API_KEY | Google Gemini API key |
| XAI_API_KEY | xAI Grok API key |
| DEFAULT_LLM_PROVIDER | Default provider (e.g., anthropic) |
| DEFAULT_LLM_MODEL | Default model (e.g., claude-sonnet-4-5-20250929) |
| LANGCHAIN_TRACING_V2 | Enable LangSmith tracing (true) |
| LANGCHAIN_API_KEY | LangSmith API key |
| LANGCHAIN_PROJECT | LangSmith project name |
See the Configuration Guide for detailed options.
🎨 What Gets Generated
Standard Documentation
The tool generates a multi-file documentation structure:
.arch-docs/
├── index.md # Table of contents with smart navigation
├── architecture.md # High-level system design
├── file-structure.md # Project organization
├── dependencies.md # External & internal deps
├── patterns.md # Design patterns detected
├── code-quality.md # Quality metrics (if data exists)
├── flows.md # Data & control flows
├── schemas.md # Data models
├── security.md # Security vulnerability analysis
├── recommendations.md # Improvement suggestions
├── kpi.md # Repository health KPI dashboard (NEW!)
├── metadata.md # Generation metadata + performance metrics
└── changelog.md # Documentation update historyWhat's New:
kpi.md: LLM-generated repository health dashboard with actionable insights on code quality, testing coverage, architecture health, dependency management, and technical debt.- Generation Performance Metrics: Added to
metadata.mdshowing agent confidence scores, execution times, token efficiency, and cost breakdown.
C4 Architecture Model
When using --c4, generates structured architecture diagrams:
.arch-docs-c4/
├── c4-model.json # Complete C4 model (JSON)
├── context.puml # System Context (Level 1)
├── containers.puml # Container Diagram (Level 2)
└── components.puml # Component Diagram (Level 3)C4 Model Levels:
- Context: Shows the system boundary, actors (users), and external systems
- Containers: Shows deployable units (APIs, web apps, databases, microservices)
- Components: Shows internal modules and their relationships within containers
🤖 Available Agents
Each agent specializes in a specific analysis task using LLM-powered intelligence:
| Agent | Purpose | Priority | Output File | Notes |
| ------------------------- | ------------------------------------------ | ----------- | ------------------- | ------------------------------- |
| File Structure | Project organization, entry points | HIGH | file-structure.md | Always runs |
| Dependency Analyzer | External deps, internal imports | HIGH | dependencies.md | Always runs |
| Architecture Analyzer | High-level design, components | HIGH | architecture.md | Always runs |
| Pattern Detector | Design patterns, anti-patterns | MEDIUM | patterns.md | Always runs |
| Flow Visualization | Control & data flows with diagrams | MEDIUM | flows.md | Always runs |
| Schema Generator | Data models, interfaces, type definitions | MEDIUM | schemas.md | Only if schemas detected ⚠️ |
| Security Analyzer | Vulnerabilities, auth, secrets, crypto | MEDIUM | security.md | Always runs |
| KPI Analyzer ⭐ NEW | Repository health, executive KPI dashboard | MEDIUM-HIGH | kpi.md | Always runs |
⚠️ Schema Generator Smart Behavior:
The Schema Generator agent is intelligent - it only generates output when it detects actual schema files:
Detects:
- ✅ Database: Prisma schemas (
.prisma), TypeORM entities (@Entity), Sequelize models - ✅ API: DTOs (
.dto.ts), OpenAPI/Swagger definitions - ✅ GraphQL: Type definitions (
.graphql,.gql) - ✅ Types: TypeScript interfaces, type definitions (focused schema files only)
Behavior:
- If NO schemas found: Generates
schemas.mdwith "No schema definitions found" message - If schemas found: Generates comprehensive documentation with Mermaid ER/class diagrams
- Uses
__FORCE_STOP__to avoid unnecessary LLM calls when no schemas exist
Why "No schemas"?
- Project may use embedded types in service/controller files (not dedicated schema files)
- Database-less projects (e.g., static site generators, CLI tools)
- API-only projects using inline interfaces
This is not a failure - it's smart detection saving you tokens and cost! 💰
KPI Analyzer Features:
- 📊 Overall repository health score (0-100%)
- 🎯 Component scores: Code quality, testing, architecture, dependencies, complexity
- 📈 Detailed metrics with ASCII visualizations
- 💡 8+ actionable insights with prioritized action items
- 🚀 Executive-friendly language with quantifiable targets
🏗️ Architecture Highlights
Multi-Agent System
The orchestrator coordinates agents to perform analysis.
┌─────────────────────────────┐
│ Documentation Orchestrator │
└─────────────┬─────────────┘
│
┌─────────┴─────────┐
│ Agent Registry │
└─────────┬─────────┘
│
┌───▼────┐ ┌───▼───┐ ┌───▼───┐
│ Agent 1│ │ Agent 2│ │ Agent N│
└────────┘ └───────┘ └───────┘Self-Refining Analysis
Each agent autonomously improves its analysis through iterative refinement. It evaluates its own output, identifies gaps, searches for relevant code, and refines until quality thresholds are met.
Learn how the self-refinement workflow works →
LangChain LCEL Integration
All agents use LangChain Expression Language (LCEL) for composable AI workflows with unified LangSmith tracing.
📊 Language Support
ArchDoc Generator supports 17 programming and markup languages out-of-the-box with zero configuration:
Programming Languages
| Language | Extensions | Import Detection | Framework Support |
| ------------------------- | ------------------------------------------------ | ----------------------------- | --------------------------------------------- |
| TypeScript/JavaScript | .ts, .tsx, .js, .jsx, .mjs, .cjs | ES6 imports, CommonJS require | NestJS, Express, React, Angular, Vue, Next.js |
| Python | .py, .pyi, .pyx | from...import, import | Django, Flask, FastAPI, Pyramid |
| Java | .java | import statements | Spring Boot, Quarkus, Micronaut |
| Go | .go | import blocks | Gin, Echo, Fiber, Chi |
| C# | .cs, .csx | using statements | ASP.NET, Entity Framework |
| C/C++ | .c, .cpp, .cc, .cxx, .h, .hpp, .hh | #include directives | Linux, POSIX |
| Kotlin | .kt, .kts | import statements | Spring, Ktor, Micronaut |
| PHP | .php | use, require | Laravel, Symfony |
| Ruby | .rb, .rake | require statements | Rails, Sinatra |
| Rust | .rs | use statements | Tokio, Actix, Rocket |
| Scala | .scala | import statements | Akka, Play |
| Swift | .swift | import statements | SwiftUI, Vapor |
Web & Data Languages
| Language | Extensions | Detection | Notes |
| --------------------- | ------------------------ | ------------------------ | ---------------------------- |
| CSS | .css, .scss, .sass | @import rules | Theme and variable detection |
| HTML | .html, .htm | src, href attributes | Script/link/image extraction |
| JSON | .json | N/A | Configuration file analysis |
| XML | .xml | xi:include elements | XInclude support |
| Flex/ActionScript | .as, .mxml | import statements | Flash/Flex project support |
Multi-Language Projects
The scanner automatically detects all supported languages in your project:
# Just run the command - no configuration needed!
archdoc analyze ./my-project
# Example output:
# ✅ Found 487 imports across 17 file types
# - TypeScript: 234 imports
# - Python: 123 imports
# - Rust: 89 imports
# - CSS: 41 importsCustom Language Support
Need support for a language not listed? No code changes required!
Add custom language configurations via .archdoc.config.json:
{
"languages": {
"custom": {
"myLanguage": {
"displayName": "My Language",
"filePatterns": {
"extensions": [".mylang"]
},
"importPatterns": {
"myImport": "^import\\s+([^;]+);"
}
}
}
}
}See Custom Language Configuration Guide for complete documentation on:
- Adding new languages
- Extending built-in language configurations
- Custom import pattern syntax
- Language-specific frameworks and keywords
🚀 Future Work & Roadmap
We're building breakthrough features to transform how teams manage architecture documentation. See our detailed roadmap → for comprehensive plans.
🎯 Upcoming Features
Q1 2026 - Real-Time Intelligence & Cost Optimization
- 🔴 Architecture Drift Detection - Monitor compliance in CI/CD
- 📐 Mermaid Diagram Export - GitHub/GitLab native rendering
- 🔌 GitHub Actions Integration - Seamless automation
- 🔬 AI/LLM Cost Reduction - Up to 95% cost savings through intelligent model routing, caching, and local models
Q2 2026 - Developer Experience
- 🎨 Interactive Web UI - Clickable graphs, search, timeline
- 🔌 VS Code Extension - Architecture sidebar in your IDE
- 🤖 AI Chat Interface - Ask questions about your codebase
Q3 2026 - Enterprise Scale
- 🌐 Cross-Repository Analysis - Multi-service dependency mapping
- 🔐 Security Audit Reports - SOC 2, GDPR, OWASP Top 10
- 📊 Organization Dashboard - System-wide health metrics
Q4 2026 - Advanced Intelligence
- 💡 AI Refactoring Plans - Step-by-step improvement guides
- 🎓 Onboarding Assistant - AI-powered developer onboarding
- 🔄 Architecture as Code - Define and enforce architecture rules
💬 Community Feedback
Have ideas? We'd love to hear them!
- 💡 Suggest Features: Open an Issue
- 🗣️ Join Discussion: GitHub Discussions
- ⭐ Vote on Features: React with 👍 on issues you care about
→ View Full Roadmap & Technical Details
🤝 Contributing
We welcome contributions! See the Contributing Guide for details on:
- Development setup
- Creating custom agents
- Testing guidelines
- Code style and standards
- Pull request process
Community Guidelines
- Code of Conduct - Our pledge to foster an open and welcoming environment
- Security Policy - How to report security vulnerabilities responsibly
- Issue Templates - Bug reports, feature requests, and more
- Pull Request Template - Guidelines for submitting changes
� Resources
- 🌐 Website: techdebtgpt.com
- 📦 GitHub: github.com/techdebtgpt/architecture-doc-generator
- 📚 Documentation: Full Documentation
- 💬 Discussions: GitHub Discussions
- 🐛 Issues: Report Issues
❓ Common Questions
Q: Why does Schema Generator say "No schema definitions found"?
A: This is not a failure - it's smart detection! The Schema Generator only generates output when it detects dedicated schema files:
What it detects:
- ✅ Prisma:
schema.prisma,*.prisma - ✅ TypeORM:
@Entity(),*.entity.ts - ✅ DTOs:
*.dto.ts, API schemas - ✅ GraphQL:
*.graphql,*.gql - ✅ OpenAPI:
swagger.json,openapi.yaml
Common causes of "No schemas":
Analyzing subdirectory only - Schema files in
prisma/won't be found if you run onsrc/only- ❌
archdoc analyze ./src(misses./prisma/schema.prisma) - ✅
archdoc analyze .(includes all directories)
- ❌
Embedded types - Types in service/controller files (not dedicated schema files)
Database-less projects - Static sites, CLI tools, frontend-only apps
Inline interfaces - TypeScript interfaces mixed with business logic
Solution: Run analysis from project root, not subdirectories.
Q: What files are excluded from vector search?
A: Vector search automatically excludes:
- Dependencies:
node_modules/,vendor/,target/ - Build outputs:
dist/,build/,out/,bin/,obj/ - Test files:
.test.,.spec.,__tests__/,test_ - Git:
.git/(and respects.gitignoreby default)
From 6,187 total files, only ~889 source files (14%) are indexed for optimal performance.
Q: Which search strategy should I use?
A: For production, use Hybrid (default):
- Combines semantic similarity (60%) + dependency graph (40%)
- Best balance of quality and performance
- Only 7% slower than vector-only, but 28% better architectural insights
For fast iteration, use Vector-only or Smart.
Q: How much does it cost?
A: Using local embeddings (FREE) with Claude Haiku:
- Small project (1K files): ~$0.10-0.20
- Medium project (5K files): ~$0.35-0.45
- Large project (10K+ files): ~$0.60-0.80
Tip: Use --depth quick to reduce cost by ~30%.
Q: Can I use it on private/closed-source code?
A: Yes! Your code is only sent to the LLM provider (Anthropic/OpenAI/Google) and is not stored or shared. Use local embeddings (embeddingsProvider: "local") for completely offline semantic search.
Q: How do I add support for my custom language?
A: No code changes needed! Add to .archdoc.config.json:
{
"languages": {
"custom": {
"myLanguage": {
"displayName": "My Language",
"filePatterns": {
"extensions": [".mylang"]
},
"importPatterns": {
"myImport": "^import\\s+([^;]+);"
}
}
}
}
}See Custom Language Guide for details.
📄 License
Apache License 2.0 - see the LICENSE file for details.
Made with ❤️ by TechDebtGPT
