@thi.ng/simd
v1.0.41
Published
WASM based SIMD vector operations for batch processing
Maintainers
Readme
[!NOTE] This is one of 211 standalone projects, maintained as part of the @thi.ng/umbrella monorepo and anti-framework.
🚀 Please help me to work full-time on these projects by sponsoring me on GitHub. Thank you! ❤️
- About
- Available functions
- Status
- Related packages
- Installation
- Dependencies
- Usage examples
- API
- Authors
- License
About
WebAssembly SIMD vector operations for array/batch processing, written in AssemblyScript. These functions use the CPU's vector instructions to process 128bit words at once, which is the equivalent width of a 4D vector with 4x 32bit components. Several of the provided functions can also be used to process 2D vectors.
Available functions
See /assembly for sources:
abs4_f32add4_f32addn4_f32clamp4_f32clampn4_f32div4_f32divn4_f32dot2_f32_aos(2)dot4_f32_aosdot4_f32_soainvsqrt4_f32madd4_f32maddn4_f32mag2_f32_aosmag4_f32_aosmagsq2_f32_aosmagsq4_f32_aosmax4_f32min4_f32mix4_f32mixn4_f32msub4_f32msubn4_f32mul4_f32muln4_f32mul_m22v2_aos(2)mul_m23v2_aos(2)mul_m44v4_aosneg4_f32normalize2_f32_aos(2)normalize4_f32_aossqrt4_f32sub4_f32subn4_f32sum4_f32swizzle4_32(f32 and u32)
(2) 2x vec2 per iteration
Also see src/api.ts for documentation about the exposed TS/JS API...
Status
ALPHA - bleeding edge / work-in-progress
Search or submit any issues for this package
The WebAssembly SIMD spec is still WIP and (at the time of writing) only partially implemented and hidden behind feature flags. Currently only fully tested (& testable for me) on Node 14.6+.
- SIMD implementation status
- Node (v12.10 .. v20.7):
node --experimental-wasm-simd(flag not needed anymore since v20.8) - Chrome: Enable SIMD support via chrome://flags
BREAKING CHANGES
0.4.0
Due to the opcode renumbering of SIMD operations proposed in April 2020, the WASM module will only work on engines released after 2020-05-21 when that change was committed to the WASM spec. For NodeJS this means only v14.6.0 or newer will be supported. This was an external change and outside our control...
Related packages
- @thi.ng/malloc - ArrayBuffer based malloc() impl for hybrid JS/WASM use cases, based on thi.ng/tinyalloc
- @thi.ng/soa - SOA & AOS memory mapped structured views with optional & extensible serialization
- @thi.ng/vectors - Optimized 2d/3d/4d and arbitrary length vector operations, support for memory mapping/layouts
- @thi.ng/vector-pools - Data structures for managing & working with strided, memory mapped vectors
Installation
yarn add @thi.ng/simdESM import:
import * as simd from "@thi.ng/simd";Browser ESM import:
<script type="module" src="https://esm.run/@thi.ng/simd"></script>For Node.js REPL:
const simd = await import("@thi.ng/simd");Package sizes (brotli'd, pre-treeshake): ESM: 2.14 KB
Dependencies
Note: @thi.ng/api is in most cases a type-only import (not used at runtime)
Usage examples
One project in this repo's /examples directory is using this package:
| Screenshot | Description | Live demo | Source | |:-----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------|:------------------------------------------------|:-----------------------------------------------------------------------------| | | Fitting, transforming & plotting 10k data points per frame using SIMD | Demo | Source |
API
import { init } from "@thi.ng/simd";
// the WASM module doesn't specify any own memory and it must be provided by user
// the returned object contains all available vector functions & memory views
// (an error will be thrown if WASM isn't available or SIMD unsupported)
const simd = init(new WebAssembly.Memory({ initial: 1 }));
// input data: 3x vec4 buffers
const a = simd.f32.subarray(0, 4);
const b = simd.f32.subarray(4, 16);
const out = simd.f32.subarray(16, 18);
a.set([1, 2, 3, 4])
b.set([10, 20, 30, 40, 40, 30, 20, 10]);
// compute dot products: dot(A[i], B[i])
// by using 0 as stride for A, all dot products are using the same vec
simd.dot4_f32_aos(
out.byteOffset, // output addr / pointer
a.byteOffset, // vector A addr
b.byteOffset, // vector B addr
2, // number of vectors to process
1, // output stride (floats)
0, // A stride (floats)
4 // B stride (floats)
);
// results for [dot(a0, b0), dot(a0, b1)]
out
// [300, 200]
// mat4 * vec4 matrix-vector multiplies
const mat = simd.f32.subarray(0, 16);
const points = simd.f32.subarray(16, 24);
// mat4 (col major)
mat.set([
10, 0, 0, 0,
0, 20, 0, 0,
0, 0, 30, 0,
100, 200, 300, 1
]);
// vec4 array
points.set([
1, 2, 3, 1,
4, 5, 6, 1,
]);
simd.mul_m44v4_aos(
points.byteOffset, // output addr / pointer
mat.byteOffset, // mat4 addr
points.byteOffset, // vec4 addr
2, // number of vectors to process
4, // output stride (float)
4 // vec stride (float)
);
// transformed points
points
// [110, 240, 390, 1, 140, 300, 480, 1]Authors
If this project contributes to an academic publication, please cite it as:
@misc{thing-simd,
title = "@thi.ng/simd",
author = "Karsten Schmidt",
note = "https://thi.ng/simd",
year = 2019
}License
© 2019 - 2025 Karsten Schmidt // Apache License 2.0
