npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@thi.ng/system

v3.1.87

Published

Minimal and explicit dependency-injection & lifecycle container for stateful app components

Downloads

557

Readme

@thi.ng/system

npm version npm downloads Mastodon Follow

[!NOTE] This is one of 211 standalone projects, maintained as part of the @thi.ng/umbrella monorepo and anti-framework.

🚀 Please help me to work full-time on these projects by sponsoring me on GitHub. Thank you! ❤️

About

Minimal and explicit dependency-injection & lifecycle container for stateful app components.

Inspired by Stuart Sierra's component framework for Clojure/ClojureScript.

Uses a declarative approach to define system components with a simple lifecycle API.

Status

STABLE - used in production

Search or submit any issues for this package

Installation

yarn add @thi.ng/system

ESM import:

import * as sys from "@thi.ng/system";

Browser ESM import:

<script type="module" src="https://esm.run/@thi.ng/system"></script>

JSDelivr documentation

For Node.js REPL:

const sys = await import("@thi.ng/system");

Package sizes (brotli'd, pre-treeshake): ESM: 579 bytes

Dependencies

Note: @thi.ng/api is in most cases a type-only import (not used at runtime)

Usage examples

Two projects in this repo's /examples directory are using this package:

| Screenshot | Description | Live demo | Source | |:--------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------|:--------------------------------------------------------------------------------------| | | CSP channel-based event handling, async transducers & reactive UI components | Demo | Source | | | Declarative component-based system with central rstream-based pubsub event bus | Demo | Source |

API

Generated API docs

TODO

Example system

import { defSystem, ILifecycle } from "@thi.ng/system";

// Step 1: Define the structure / components of your system

interface FooSys {
    db: DB;
    cache: Cache;
    logger: Logger;
    dummy: ILifecycle;
}

// Step 2: Provide component implementations
// Components can be classes or any object implementing the (fully optional)
// `ILifecycle` interface...

class Logger implements ILifecycle {

    info(msg: string) {
        console.log(`[info] ${msg}`);
    }

    async start() {
        this.info("start logger");
        return true;
    }

    async stop() {
        this.info("stop logger");
        return true;
    }
}

// DB requires a logger & cache

class DB implements ILifecycle {

    constructor(protected logger: Logger, protected cache: Cache) {}

    async start() {
        this.logger.info("start db");
        return true;
    }

    async stop() {
        this.logger.info("stop db");
        return true;
    }
}

class Cache implements ILifecycle {

    constructor(protected logger: Logger) {}

    async start() {
        this.logger.info("start cache");
        return true;
    }

    async stop() {
        this.logger.info("stop cache");
        return true;
    }
}

// Step 3: Define system & component dependencies
// This will initialize all components in dependency order

// - All arg types and dependency IDs are inferred / type checked
// - `System` itself implements `ILifecycle`, so can be used to form
//   nested systems

const FOO = defSystem<FooSys>({
    db: {
        factory: async (deps) => new DB(deps.logger, deps.cache),
        deps: ["logger", "cache"],
    },
    logger: { factory: async () => new Logger() },
    cache: {
        factory: async ({ logger }) => new Cache(logger),
        deps: ["logger"],
    },
    dummy: {
        factory: async ({ logger }) => ({
            async start() {
                logger.info("start dummy");
                return true;
            },
            async stop() {
                logger.info("stop dummy");
                return true;
            },
        }),
        deps: ["logger"]
    }
});

// Step 4: Asynchronously start all components in dependency order
await FOO.start();
// [info] start logger
// [info] start cache
// [info] start dummy
// [info] start db

// Step 5 (optional): Async shutdown all (in reverse order)
await FOO.stop();
// [info] stop db
// [info] stop dummy
// [info] stop cache
// [info] stop logger

// Alternatively, calls stop() & if successful followed by start()
await FOO.reset();

System visualization

For a System to initialize its components in the correct order, an internal dependency graph is constructed. This graph is not required any further after system initialization (see System.init()), though can be useful for debugging and documentation purposes.

For example, we can utilize the @thi.ng/dgraph-dot package to generate a Graphviz source file to visualize the dependencies between the system's components.

import { toDot } from "@thi.ng/dgraph-dot";

console.log(toDot(FOO.graph, { id: (node) => node }));
// digraph g {
// "db"[label="db"];
// "logger"[label="logger"];
// "cache"[label="cache"];
// "dummy"[label="dummy"];
// "db" -> "logger";
// "db" -> "cache";
// "cache" -> "logger";
// "dummy" -> "logger";
// }

Resulting visualization:

graphviz output

Authors

If this project contributes to an academic publication, please cite it as:

@misc{thing-system,
  title = "@thi.ng/system",
  author = "Karsten Schmidt and others",
  note = "https://thi.ng/system",
  year = 2020
}

License

© 2020 - 2025 Karsten Schmidt // Apache License 2.0