npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@topica314/apitore

v0.0.4

Published

Apitore API wrapper for NLP

Downloads

22

Readme

apitore

Apitore API wrapper for NLP

usage

const Nlp = require('@topica314/apitore');
const ACCESS_TOKEN = 'YOUR_ACCESS_TOKEN';
const nlp = Nlp.create(ACCESS_TOKEN);

docs

Nlp Apitoreのwrapper

  @method tokenize
  @param  text {string} 形態素分解したい文
  @return {promise}     tokens {object} をresolve

  @method wordVector
  @param  word {string} ベクトルに変換したい単語
  @return {promise}     vector {vector} をresolve

  @method vecDistance
  @param  vector  {vector}  単語に変換したいベクトル
  @param  num     {number}  取得する単語の数
  @return {promise}         distances {object, keys: word, distance} をresolve

  @method analogy
  @param  positives {array}   正として処理したい単語{string}の配列
  @param  negatives {array}   負として処理したい単語{string}の配列
  @param  num       {number}  取得する類似単語の数
  @return {promise}           analogies {array of words{string}} をresolve

  @method distance
  @param  word  {string}  単語
  @param  num   {number}  取得する単語の数
  @return {promise}       distances {object, keys; word, distance} をresolve

  @method similarity
  @param  word1 {string}  
  @param  word2 {string}  
  @return {promise}       similarity {number} をresolve

上記メソッドのwrapper

  @method wakachi
  @param  text  {string}  分かち書きしたい文章
  @return {promise}       surfaces {array of words{string}} を resolve

  @method tendency  b + c - aを評価 (aにおけるb に対する cにおけるx)
  @param  a {string}
  @param  b {string}
  @param  c {string}
  @return {promise} mostAnalogWord {string} をresolve

  @method word2vec
  @params ...words  {string}
  @return {promise} vectors {array of vector} をresolve

  @method vec2word
  @params ...vecs  {vector}
  @return {promise}  words  {array of string} をresolve

Vector

  @static
  @method add
  @params  ...vecs {vector}
  @return vecs  {vector}

  @static
  @method sub
  @param  vec1  {vector}
  @param  vec2  {vector}
  @return vec   {vector}  vec1 - vec2

  @method normalize
  @param  {void}
  @return vec {vector}  正規化

  @method toString
  @param  {void}
  @return str {string}  join(',')